傅里叶和互相关算法及c程序
1.快速傅里叶变换(FFT)
1.1 叶变换简介快速傅里
有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965 年,Cooley 和Tukey 提出了计算离散傅里叶变换(DFT)的快速算法,将DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换( FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT 的出现和发展而迅速发展。根据对序列分解与选取方法的不同而产生了FFT 的多种算法,基本算法是基-2DIT 和基-2DIF。FFT 在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的
奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。
快速傅立叶变换作为一种数学方法,已经广泛地应用在几乎所有领域的频谱分析中,而且经久不衰,因为信号处理方法没有先进和落后之分,只有经典和现代之别,在实际系统中用得最好的方法就是管用的方法。换句话说,信号处理方法与应用背景和目的的贴近程度是衡量信号处理方法优劣的唯一标准。FFT 是快速傅利叶变换(Fast FourierTransform 简称FFT)的英文缩写,它在当今科技世界中的应用相当活跃,无论是在时间序列分析领域中,还是在我国刚刚兴起的生物频谱治疗的研究与应用中,都有着重要的作用。同时,它又是软件实现数字滤波器的必备组成部分之一。
FFT 算法的基本思想:利用DFT 系数的特性,合并DFT 运算中的某些项,把长序列的DFT—>短序列的DFT&