最优化方法
文章平均质量分 86
意念回复
这个作者很懒,什么都没留下…
展开
-
最优化方法一:梯度下降法
目录1 梯度下降1.1梯度下降的场景假设1.2 梯度下降1.2.1 微分:1.2.2 梯度1.3梯度下降算法的数学解释1.3.1 α是什么含义1.3.2为什么要梯度要乘以一个负号?1.4梯度下降算法的实例1.4.1单变量函数的梯度下降1.4.2多变量函数的梯度下降1.5python实现一个简单的梯度下降算法1.5.1 原理1.5...原创 2018-10-07 18:37:02 · 9262 阅读 · 1 评论 -
最优化方法二:牛顿法与拟牛顿法
1 牛顿法1.1 原始牛顿法1.1.1 N=1时,即自变量的维度为1注:泰勒展开式 泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。 若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,...原创 2019-08-17 23:43:46 · 1290 阅读 · 0 评论