机器学习算法

学习目标:

一天机器学习

学习内容:

机器学习基本算法:

1. 决策树(分类)

根据一些 feature(特征) 进行分类,每个节点提一个问题,通过判断,将数据分为两类,想到了数据结构里的树和软件工程流程图。
在这里插入图片描述

2. 随机森林:随机森林是一个包含多个决策树的分类器(集成学习:独立并联的结构)

在源数据中随机选取数据,组成几个子集:
在这里插入图片描述
S矩阵是源数据,有1-N条数据,A、B、C 是feature,最后一列C是类别:
在这里插入图片描述
由S随机生成M个子矩阵:
在这里插入图片描述
这M个子集得到 M 个决策树:将新数据投入到这M个树中,得到M个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果

3. 逻辑回归:只适应于线性

当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的。
在这里插入图片描述
线性回归:y=kx+b,预测预估 多特征值:特征工程。
训练进度:损失函数:(预估-实际)的平方和(小)

在这里插入图片描述

logistic回归又称logistic回归分析,是一种广义的线性回归分析模型。P(0-1)线性回归上套用的概率。
训练进度(小):在这里插入图片描述
判断概率

4. 支持向量机 (分类)

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 朴素贝叶斯(分类模型):情感分类上,常用于文本分类,条件概率。

P(A)称为"先验概率"(Prior probability)
P(A|B)称为"后验概率"(Posterior probability)
P(B|A)/P(B)称为"可能性函数"(Likelyhood)
在这里插入图片描述
不能保证每个事件独立。

6. K近邻算法(推荐系统)周围人喜欢什么你喜欢什么?

也是分类,但是只是局部分类,待测样本点周围进行分类,主要就是K的选择。
理论上,K值越大,范围越大,待策决定点越多。

7. Adaboost:自适应增强算法(集成学习:顺序的结构重权重,解决困难样本;天花板高,但慢啊)

是 Boosting 的方法之一。Boosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。
在这里插入图片描述

8. K均值算法

先要将一组数据,分为三类,粉色数值大,黄色数值小 。最开始先初始化,这里面选了最简单的 3,2,1 作为各类的初始值 。剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别。

9. 神经网络:监督类算法

在这里插入图片描述
模型可以有更多的结构,但是难又慢
在这里插入图片描述
在这里插入图片描述
丢掉一点不必要的信息。
在这里插入图片描述

10. 马尔科夫(增强学习:试错)

Markov Chains由state(状态)和transitions(转移)组成。例子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到markov chains。
生成随机文本吧。
在这里插入图片描述
在这里插入图片描述

分类:

  1. 监督式学习:数据都标了
    回归:逻辑和线性
    分类:决策树,随机森林,支持向量机,贝叶斯
    神经网络
  2. 非监督式学习:没标
    聚类算法(K-Means(K均值)聚类,EM算法等
  3. 半监督式学习:部分标了
  4. 强化学习:马尔科夫:让他自己试错

学习时间:

2021/5/13

学习产出:

1、 技术笔记 1 遍
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值