主要思想
分治策略的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。
分治策略的步骤
- 分(divide):递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
- 治(conquer):将这些规模更小的子问题逐个击破;
- 合(combine):将已解决的子问题逐层合并,最终得出原问题的解;
分治法适用的情况
- 原问题的计算复杂度随着问题的规模的增加而增加。
- 原问题能够被分解成更小的子问题。
- 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
- 原问题分解出的子问题的解可以合并为该问题的解。
分治策略伪代码
def divide_conquer(problem, paraml, param2,...):
# 不断切分的终止条件
if problem is None:
print_result
return
# 准备数据
data=prepare_data(problem)
# 将大问题拆分为小问题
subproblems=split_problem(problem, data)
# 处理小问题,得到子结果
subresult1=self.divide_conquer(subproblems[0],p1,..…)
subresult2=self.divide_conquer(subproblems[1],p1,...)
subresult3=self.divide_conquer(subproblems[2],p1,.…)
# 对子结果进行合并 得到最终结果
result=process_result(subresult1, subresult2, subresult3,...)
递推关系的时间复杂度
根据分治算法的定义是划分为和原问题一致的小问题,那么它的实现一定是通过递归。递归的每一个步骤是一个递推关系式(Recurrence Relation),那么研究分治或者递推的时间复杂度就需要先得到这样的递推关系式。以下是一系列分治策略中递推关系式的主定理
经典题目
二分查找、并归排序、快速排序
高频题目
LeetCode By Python: 50. 剑指Offer第2版 16. 数值的整数次方
LeetCode By Python: 53. 剑指Offer第2版 42. 连续子数组的最大和
LeetCode By Python: 169. 剑指Offer第2版 39. 多数元素
参考
Datawhale 编程实践 (LeetCode分类练习)