简述递归和分治的关系_LeetCode By Python: 分治专题

本文深入探讨了分治策略的核心思想,包括分、治、合三个步骤,以及适用条件。通过递归关系分析了分治算法的时间复杂度。文章列举了经典如二分查找、归并排序、快速排序等分治实例,并提到了在LeetCode中的一些高频题目,如数值的整数次方、连续子数组的最大和和多数元素问题。
摘要由CSDN通过智能技术生成

主要思想

分治策略的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。

分治策略的步骤

  • 分(divide)递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
  • 治(conquer):将这些规模更小的子问题逐个击破
  • 合(combine):将已解决的子问题逐层合并,最终得出原问题的解;

26ee21167fd8bac291a45d1e8b4fc207.png

分治法适用的情况

  • 原问题的计算复杂度随着问题的规模的增加而增加。
  • 原问题能够被分解成更小的子问题。
  • 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
  • 原问题分解出的子问题的解可以合并为该问题的解。

分治策略伪代码

def divide_conquer(problem, paraml, param2,...):
    # 不断切分的终止条件
    if problem is None:
        print_result
        return
    # 准备数据
    data=prepare_data(problem)
    # 将大问题拆分为小问题
    subproblems=split_problem(problem, data)
    # 处理小问题,得到子结果
    subresult1=self.divide_conquer(subproblems[0],p1,..…)
    subresult2=self.divide_conquer(subproblems[1],p1,...)
    subresult3=self.divide_conquer(subproblems[2],p1,.…)
    # 对子结果进行合并 得到最终结果
    result=process_result(subresult1, subresult2, subresult3,...)

递推关系的时间复杂度

根据分治算法的定义是划分为和原问题一致的小问题,那么它的实现一定是通过递归。递归的每一个步骤是一个递推关系式(Recurrence Relation),那么研究分治或者递推的时间复杂度就需要先得到这样的递推关系式。以下是一系列分治策略中递推关系式的主定理

3621b95c4d1e194e2df405f3dd5ee933.png
减法递推公式的主定理

3621b95c4d1e194e2df405f3dd5ee933.png
除法递推公式的主定理

经典题目

二分查找、并归排序、快速排序

高频题目

LeetCode By Python: 50. 剑指Offer第2版 16. 数值的整数次方

LeetCode By Python: 53. 剑指Offer第2版 42. 连续子数组的最大和

LeetCode By Python: 169. 剑指Offer第2版 39. 多数元素

参考

Datawhale 编程实践 (LeetCode分类练习)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值