波士顿房价预测python_机器学习之路:python k近邻回归 预测波士顿房价

本文使用Python的sklearn库实现K近邻回归算法,对波士顿地区的房价进行预测。通过加载数据、分割训练集和测试集、标准化处理、训练模型以及模型评估,展示了平均权重和距离加权两种方式的KNN回归效果。
摘要由CSDN通过智能技术生成

1 from sklearn.datasets importload_boston2 from sklearn.cross_validation importtrain_test_split3 from sklearn.preprocessing importStandardScaler4 from sklearn.neighbors importKNeighborsRegressor5 from sklearn.metrics importr2_score, mean_squared_error, mean_absolute_error6 importnumpy as np7

8 #1 准备数据

9 #读取波士顿地区房价信息

10 boston =load_boston()11 #查看数据描述

12 #print(boston.DESCR) # 共506条波士顿地区房价信息,每条13项数值特征描述和目标房价

13 #查看数据的差异情况

14 #print("最大房价:", np.max(boston.target)) # 50

15 #print("最小房价:",np.min(boston.target)) # 5

16 #print("平均房价:", np.mean(boston.target)) # 22.532806324110677

17

18 x =boston.data19 y =boston.target20

21 #2 分割训练数据和测试数据

22 #随机采样25%作为测试 75%作为训练

23 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33)24

25

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值