计算机原理74181芯片,计算机原理整理原版1.10.pdf

第二章

2.2 将下列十进制数表示成浮点规格化数, 阶码 3 位,用补码表示; 尾数 9 位,用补码表示。

(1)27/6401000000=0.0110110=0.11011 ×2-1

规格化浮点表示为: [27/64] 原= 101,011011000

[27/64] 反= 110,011011000

[27/64] 补= 111,011011000

(2 )同理: --27/64=-- 0.11011 ×2-1

规格化浮点表示为: [27/64] 原= 101,111011000

[27/64] 反= 110, 100100111

[27/64] 补= 111, 100101000

2.8 已知 x 和 y ,用变形补码计算 x±y ,并对结果进行讨论。

1)[x] 补 =00.1101 [y] 补 =11.0010

[x+y]补= [x] 补+[y] 补 =11.1111 无溢出

x+y= -0.0001

[x] 补 =00.1101 [--y] 补 =00.1110

[x -y] 补= [x] 补 +[--y]补 =01.1011 正向溢出

2 )[x] 补 =11.0101 [y] 补 =00.1111

[x+y]补= [x] 补+[y] 补 =00.0100 无溢出

x+y= 0.0100

[x] 补 =11.0101 [--y] 补 =11.0001

[x -y] 补= [x] 补 +[--y]补 =10.0110 负向溢出

3) [x] 补 =11.0001 [y] 补 =11.0100

[x+y] 补= [x] 补+[y] 补 =10.0101 负向溢出

[x] 补 =11.0001 [--y] 补 =00.1100

[x -y] 补= [x] 补 +[--y]补 =11.1101 无溢出

X-y= -0.0011

2.9 用原码一位乘法和补码一位乘法计算 x*y 。

1)原码一位乘法 |x|=00.1111 |y|=0.1110

部分积 乘数 yn

00.0000 0.1110

+00.0000

00.0000

00.00000 0.111

+00.1111

00.11110

00.011110 0.11

+00.1111

01.011010

00.1011010 0.1

+00.1111

01.1010010

00

Pf=xf ⊕yf=1 |p|=|x| ×|y|=0

所以 [x ×y]原 =1

补码一位乘法 [x]补 =11.0001 [y]补 =0.1110 [--x] 补 =11.0001

部分积 yn yn+1

00.0000 0.11100

00.00000 0.1110

+00.1111

00.11110

00.011110 0.111

00.0011110 0.11

00 0.1

+11.0001

11

[x ×y] 补 =11

2 )原码一位乘法 |x|=00.110 |y|=0.010

部分积 乘数 yn

00.000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值