因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
基本步骤:
步骤1:确认待分析的原始变量之间是否存在较强的相关关系。可采用计算“相关系数矩阵”“巴特利特球度检验”“KMO检验”等方法检验候选数据是否适合采用因子分析。
“分析”——“降维”——“因子分析”——“描述”
步骤2:构造因子变量将原有变量综合成少数几个因子是因子分析的核心内容。根据样本数求解 因子载荷阵,因子载荷阵的求解方法:“基于主成分模型的 主成分分析法”“基于因子分析模型的 主轴因子法”“ 极大似然法”“ Alpha因子法”等。
“分析”——“降维”——“因子分析”——“抽取”
步骤3:利用旋转方式使因子变量更具有解释性,将原有变量综合为少数几个因子后,如果因子的实际含义