springboot相关书籍文献_Monte Carlo 方法在统计物理中的应用 相关书籍和文献

本文介绍了蒙特卡洛方法在统计物理中的应用,包括历史、理论、Metropolis-Hastings算法,列举了多个相关书籍和文献,详细阐述了如何使用蒙特卡洛方法进行统计物理的计算,如在Ising模型中的应用,并讨论了Multi-canonical方法。
摘要由CSDN通过智能技术生成

783bc38d06711c06067ca57f078a1563.png

http://bayes.wustl.edu/Manual/EquationOfState.pdf

Equation of State Calculations by Fast Computing Machines

被引数:37469,神作

http://cftc.cii.fc.ul.pt/ensino/FisComp/binder.pdf

Applications of Monte Carlo methods to statistical physics

http://assets.cambridge.org/97805218/42389/frontmatter/9780521842389_frontmatter.pdf

A Guide to Monte Carlo Simulations in Statistical Physics, Second Edition

http://maxwell.ucsc.edu/~peter/converge_new.pdf

Monte Carlo Simulations in Statistical Physics

http://bookzz.org/book/445395/8a4fec/?_ir=1

A Guide to Monte Carlo Simulations in Statistical Physics

更新

· M. Suzuki, Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific (Singapore, New Jersey, London, Hong Kong)

· Akira Onuki, Phase Transition Dynamics

Articles:

· Lee, SH., Koo, T.Y. & Jeong, Y.H. Journal of the Korean Physical Society (2016), Ferroelectric domain patterns and domain boundary imprint in the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-9%PbTiO3 as observed by using piezoresponse force microscopy

· S. C. CHAE, department of physics education, Domain Patterns and Electric Properties at Domain Walls in a Surface Normal to the Direction of Ferroelectric Polarization in h-ErMnO3

· Pereira, A.R. Pires, A.S.T., Gouvêa, M.E. et al. Z. Physik B - Condensed Matter (1992) Dynamical correlation from topological solitons in two-dimensional anisotropic models


相关书籍

https://arxiv.org/pdf/1506.02567.pdf​arxiv.org

蒙特卡洛方法历史

Equation of State Calculations by Fast Computing Machines, N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Journal of Chemical Physics, 21, 1087-1092 (1953) [PDF]

The Beginning of the Monte Carlo Method, N. Metropolis, Los Alamos Science, 14, 125-130 (1987) [PDF]

Scientific Uses of the MANIAC, H. L. Anderson, Journal of Statistical Physics, 43, 731-748 (1986) [PDF]

蒙特卡洛理论和算法

Progress and Outlook in Monte Carlo Simulations, D. N. Theodorou, Industrial & Engineering Chemistry Research, 49, 3047-3058 (2010) [PDF]

Monte Carlo Simulations, D. J. Earl and M. W. Deem, Methods in Molecular Biology, 443, 25-36 (2008) [PDF]

Monte Carlo Codes, Tools and Algorithms, D. Dubbledam, A. Torres-Knoop and K. S. Walton, Molecular Simulation, 39, 1253-1292 (2013) [PDF]


统计物理学中的蒙特卡罗方法

内容概述
在统计物理中使用蒙特卡罗方法的一般动机是计算多变量积分。典型的问题始于哈密顿量已知的系统,该系统处于给定温度并遵循玻尔兹曼统计。为了获得某些宏观量的平均值,比如A,一般方法是在所有相空间上计算,为简单起见,使用玻尔兹曼分布计算A的平均值:

其中

是由给定状态定义的系统能量。
为具有所有自由度的矢量(例如,对于力学系统,
),
以及
是配分函数。

解决这个多变量积分的一种可能方法是精确地列举系统的所有可能构型,并计算平均值。这是在完全可解系统中完成的,并且是在少量粒子构成的简单系统中可模拟的。另一方面,在现实系统中,往往是难以或不可能实现精确枚举的。
对于那些系统,通常采用蒙特卡洛积分。其使用的主要动机是,通过蒙特卡罗积分,误差正比于
,与积分的维度无关。与蒙特卡洛积分相关的另一个重要概念是
重要性采样,它是一种优化计算时间的技术。 重要性抽样


蒙特卡罗积分


其中
从所有相空间(PS)中均匀获取,N是采样点数。

在所有相空间中,一些区域相对于其它区域通常对变量
的平均值更为重要。特别是那些与剩余的能谱相比足够高的
值,对积分来说最相关。这样的话,自然要问的是:是否有可能以更密集的方式选择与积分更相关的状态?

那就是使用重要性采样技术
假设

是一种分布,选择与积分更相关的状态.

平均值
可以改写为

其中
是考虑重要性概率
的采样值.

积分可以这样计算


其中
使用
分布随机生成。由于大多数时候很难找到一种生成具有给定分布状态的方法,因此必须使用Metropolis算法.


我们知道,x系统的最可能状态是最大化玻尔兹曼分布的状态,一个好的分布

,选择重要性采样是玻尔兹曼分布或经典分布.

这就是我们要使用的分布。带入之前的求和,

要获得给定变量的平均值,使用具有正则分布的 metropolis 算法的过程就是使用metropolis算法来生成由分布 p(r) 给出的状态, 并对 A 实现平均值.

在使用带有正则分布的 metropolis 算法时,必须考虑一个重要问题: 在执行给定的度量(即实现r)时,必须确保该实现与系统之前的状态不相关(否则不会“随机”生成状态). 对于具有能隙的系统,使用正则分布会带来问题,因为系统从先前的状态到脱离关联的新态所需的时间可能趋于无穷大.

Multi-canonical


如前所述,微正则方法有一个大的缺点,这在大多数使用蒙特卡罗积分的系统中都很重要。对于具有“rough energy landscapes”的系统,可以使用Multi-canonical方法。
Multi-canonical方法对重要性采样使用不同的选择:


其中
是系统的态密度。这种选择的主要优点是能量直方图是平滑的,即生成的状态在能量上均匀分布. 这意味着,当使用 Metropolis 算法时,模拟不会看到“rough energy landscape”,因为每个能量都被平等对待.

这种选择的主要缺点是,在大多数系统中,
是未知的. 为了克服这个问题,Wang和Landau算法通常用于在模拟中获取DOS. 请注意,在DOS已知以后,可以为每个温度计算每个变量的平均值,因为状态的生成不依赖于
.

实现
下面,我们看Ising模型。我们考虑一个二维自旋网格,每边都有L个自旋(点阵)。自然有

个自旋,因此,相空间是离散的,其特征是N个自旋.

9e28d28d7246e1a4af52e0dada6009b4.png

其中
是每个格点的自旋. 系统的能量由下式给出

其中

是i的一系列的第一近邻自旋,J是相互作用矩阵(对于铁磁ising模型,J是单位矩阵).

在这个例子中,目标是获得
(例如,为了获得系统的磁化率),因为它可以直接推广到其它可观测量.

根据定义,


首先,必须初始化系统:


有了微观选择,必须采用 metropolis 方法。因为没有正确的方法来选择要选择的那个状态,所以可以尝试在一个时刻翻转一个自旋. 这种选择通常称为单自旋翻转. 执行以下步骤以实现单个测量.


第1步:生成


步骤1.1:执行以下迭代的TT次数:
步骤1.1.1:随机选择一个点阵点(概率为1 / N),称为i,旋转


步骤1.1.2:选择一个随机数

步骤1.1.3:计算试图翻转自旋的能量变化i:
及其磁化律变化:

步骤1.1.4:如果
,翻转自旋
,否则,不翻转。

步骤1.1.5:在自旋翻转的情况下更新宏观量:


在T时间之后,系统被认为与其先前状态不相关, 这意味着此时系统处于给定状态的概率遵循玻尔兹曼分布,这是该方法提出的目标.


第2步


步骤2.1:在直方图上保存 M 和 M^2 的值.
最后要注意的是,应该注意到 T 并不容易估计,因为当系统与之前的状态解相关时并不容易。为了克服这一点,人们通常不使用固定的 T,而使用 T 作为隧道时间. 一个隧道时间被定义为步骤1的数量,系统需要从其能量的最小值到其能量的最大值并返回.
在像Ising模型这样的系统中采用自旋翻转选择的这种方法的主要缺点是隧穿时间按照幂律定义为

,其中z大于0.5,称为
临界慢化现象.

适用性


该方法忽略了动力学,这可能是一个主要缺点,或者是一个很大的优点. 实际上,该方法只能应用于静态量,但选择移动的自由度使得该方法非常灵活. 另一个优点是某些系统,例如伊辛模型,缺乏动态描述,仅由能量方法定义; 对于这些,蒙特卡洛方法是唯一可行的方法.

推广


该方法在统计力学中的巨大成功带来了许多的推广, 例如用于优化的模拟退火方法,其中引入了虚拟温度然后逐渐降低.


Metropolis-Hastings算法

在统计和统计力学中,Metropolis-Hastings算法是马尔科夫链蒙特卡洛(MCMC)方法,用于从难以直接采样的概率分布中获得随机样本序列。该序列可用于近似分布(例如,生成直方图)或计算积分(例如,期望值)。Metropolis-Hastings和其它MCMC算法通常用于从多维分布中采样,特别是当维数很高时。对于单维分布,通常有其它方法可以直接从分布中返回独立样本,并且这些方法没有MCMC方法中固有的自相关样本的问题。

历史

该算法以Nicholas Metropolis命名,Nicholas Metropolis 与Arianna W. Rosenbluth,Marshall Rosenbluth,Augusta H. Teller和Edward Teller一起撰写了1953年的Equation of State Calculations by Fast Computing Machines。本文提出了对称建议分布情况的算法,并且WK Hastings在1970年将其扩展到更一般的情况。[1]

对算法开发的贡献描述不同。Metropolis在早期的文章中与Stanislav Ulam一起创造了“Monte Carlo”一词,对该方法的计算方面非常熟悉,并领导了设计和建造MANIAC I的理论部门。1952年实验中使用的计算机。在其他作者去世后,在他自己去世前不久,Marshall Rosenbluth在口头采访中声称他是该方法的创造者,尽管他被列为未成年人(第三)论文的共同作者。他的断言的有效性从未得到证实。罗森布鲁斯的说法与爱德华·泰勒的说法有冲突,后者在他的回忆录中指出,1953年论文的五位作者共同合作了“days (and nights)”[2]。根据Roy Glauber和EmilioSegrè的说法,最初的算法是由Enrico Fermi发明的,并由Stan Ulam重新发明。

直觉

Metropolis-Hastings算法可以从任何概率分布中提取样本

,提供一个函数的值
与密度成正比
可以计算。要求
必须只与密度成比例,而不是与它完全相等,这使得Metropolis-Hastings算法特别有用,因为计算归一化因子往往是有难度的。

Metropolis-Hastings算法的工作原理是生成一系列样本值,使得随着越来越多的样本值产生,值的分布更接近于所需的分布

。这些样本值是迭代生成的,下一个样本的分布仅取决于当前样本值(从而使样本序列成为马尔科夫链)。具体地,在每次迭代时,算法基于当前样本值选择下一样本值的​​候选者。然后,以某种可能性,候选者被接受(在这种情况下候选值在下一次迭代中使用)或被拒绝(在这种情况下候选值被丢弃,并且当前值在下一次迭代中被重用) - 概率通过比较函数的值来确定接受程度
当前和候选样本值相对于期望分布的变化

Metropolis算法

为与所需概率分布
(又称目标分布)成比例的函数。
  1. 初始化:选择一个任意点
    作为初始样本,并选择任意概率密度
    表明下一个样本值的候选者
    ,给出前一个样本值
    。对于Metropolis算法,
    必须是对称的; 换句话说,它必须满足
    。通常的选择是使
    为一个以
    为中心的高斯分布,使点更接近

函数

称为
跳跃分布
  1. 对于每次迭代t
  • 生成 :生成候选态
    通过从分布中挑选来获取下一个样本
  • 计算 :计算接受率
    ,将用于决定是接受还是拒绝。因为
    f P 的密度成正比,所以我们有
  • 接受或拒绝
    • 在[0,1]上生成一个均一的随机数u。
    • 如果
      通过设置
      接受候选
    • 如果
      拒绝候选并设定
      替代。

相关阅读

yang元祐:2维伊辛模型 数值模拟​zhuanlan.zhihu.com
966c9e8062fad2e9ad63ea4ce609b195.png
yang元祐:Ising 模型​zhuanlan.zhihu.com
5b63b79544340eb3e0c8919c2a5a1e94.png

导航 >>>>>>

专栏(欢迎订阅投稿)

繁星悟语 ······················································用Python做科学计算

计算物理·······················································本科物理与研究生物理

收藏夹(欢迎阅读分享)

知乎体科普 ···················凝聚态物理101问与答·················· 物理干货铺·················· Python收纳盒

学术黑名单 ···················劝退实验室······································ 学习资源站

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值