matlab与数值分析课件,matlab在数值分析中的应用PPT演示课件

《matlab在数值分析中的应用PPT演示课件》由会员分享,可在线阅读,更多相关《matlab在数值分析中的应用PPT演示课件(49页珍藏版)》请在人人文库网上搜索。

1、第七章微分方程问题的解法,微分方程的解析解方法微分方程问题的数值解法微分方程问题算法概述四阶定步长Runge-Kutta算法及MATLAB实现一阶微分方程组的数值解微分方程转换特殊微分方程的数值解,1,7.1微分方程的解析解方法,格式:y=dsolve(f1,f2,fm)格式:指明自变量y=dsolve(f1,f2,fm,x)fi即可以描述微分方程,又可描述初始条件或边界条件。如:描述微分方程时描述条件时,2,例:symst;u=exp(-5*t)*cos(2*t+1)+5;uu=5*diff(u,t,2)+4*diff(u,t)+2*uuu=87*exp(-5*t)*cos(2*t+1)+9。

2、2*exp(-5*t)*sin(2*t+1)+10symsty;y=dsolve(D4y+10*D3y+35*D2y+50*Dy+24*y=,.87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1)+10),3,y=dsolve(D4y+10*D3y+35*D2y+50*Dy+24*y=,.87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1).+10,y(0)=3,Dy(0)=2,D2y(0)=0,D3y(0)=0),4,分别处理系数,如:n,d=rat(double(vpa(-445/26*cos(1)-51/。

3、13*sin(1)-69/2)ans=-8704185%rat()最接近有理数的分数判断误差:vpa(-445/26*cos(sym(1)-51/13*sin(1)-69/2+8704/185)ans=.114731975864790922564144636e-4,5,y=dsolve(D4y+10*D3y+35*D2y+50*Dy+24*y=,.87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1)+.10,y(0)=1/2,Dy(pi)=1,D2y(2*pi)=0,Dy(2*pi)=1/5);如果用推导的方法求Ci的值,每个系数的解析解至少要写出10。

4、数行,故可采用有理式近似的方式表示.vpa(y,10)%有理近似值ans=1.196361839*exp(-5.*t)+.4166666667-.4785447354*sin(t)*cos(t)*exp(-5.*t)-.4519262218e-1*cos(2.*t)*exp(-5.*t)-2.392723677*cos(t)2*exp(-5.*t)+.2259631109*sin(2.*t)*exp(-5.*t)-473690.0893*exp(-3.*t)+31319.63786*exp(-2.*t)-219.1293619*exp(-1.*t)+442590.9059*exp(-4.*t)。

5、,6,例:symstxx=dsolve(Dx=x*(1-x2)x=1/(1+exp(-2*t)*C1)(1/2)-1/(1+exp(-2*t)*C1)(1/2)symstx;x=dsolve(Dx=x*(1-x2)+1)Warning:Explicitsolutioncouldnotbefound;implicitsolutionreturned.InD:MATLAB6p5toolboxsymbolicdsolve.matline292x=t-Int(1/(a-a3+1),a=.x)+C1=0故只有部分非线性微分方程有解析解。,7,7.2微分方程问题的数值解法7.2.1微分方程问题算法概述,8。

6、,微分方程求解的误差与步长问题:,9,10,11,7.2.2四阶定步长Runge-Kutta算法及MATLAB实现,12,functiontout,yout=rk_4(odefile,tspan,y0)y0初值列向量t0=tspan(1);th=tspan(2);iflength(tspan)t_final=100;x0=0;0;1e-10;%t_final为设定的仿真终止时间t,x=ode45(lorenzeq,0,t_final,x0);plot(t,x),figure;%打开新图形窗口plot3(x(:,1),x(:,2),x(:,3);axis(1042-2020-2025);%根据实。

7、际数值手动设置坐标系,18,可采用comet3()函数绘制动画式的轨迹。comet3(x(:,1),x(:,2),x(:,3),19,描述微分方程是常微分方程初值问题数值求解的关键。f1=inline(-8/3*x(1)+x(2)*x(3);-10*x(2)+10*x(3);,.-x(1)*x(2)+28*x(2)-x(3),t,x);t_final=100;x0=0;0;1e-10;t,x=ode45(f1,0,t_final,x0);plot(t,x),figure;plot3(x(:,1),x(:,2),x(:,3);axis(1042-2020-2025);得出完全一致的结果。,20,。

8、7.2.3.3MATLAB下带有附加参数的微分方程求解,例:,21,编写函数functionxdot=lorenz1(t,x,flag,beta,rho,sigma)flag变量是不能省略的xdot=-beta*x(1)+x(2)*x(3);-rho*x(2)+rho*x(3);-x(1)*x(2)+sigma*x(2)-x(3);求微分方程:t_final=100;x0=0;0;1e-10;b2=2;r2=5;s2=20;t2,x2=ode45(lorenz1,0,t_final,x0,b2,r2,s2);plot(t2,x2),options位置为,表示不需修改控制选项figure;plo。

9、t3(x2(:,1),x2(:,2),x2(:,3);axis(072-2022-3540);,22,f2=inline(-beta*x(1)+x(2)*x(3);-rho*x(2)+rho*x(3);,.-x(1)*x(2)+sigma*x(2)-x(3),t,x,flag,beta,rho,sigma);flag变量是不能省略的,23,7.2.4微分方程转换7.2.4.1单个高阶常微分方程处理方法,24,25,例:函数描述为:functiony=vdp_eq(t,x,flag,mu)y=x(2);-mu*(x(1)2-1)*x(2)-x(1);x0=-0.2;-0.7;t_final=20。

10、;mu=1;t1,y1=ode45(vdp_eq,0,t_final,x0,mu);mu=2;t2,y2=ode45(vdp_eq,0,t_final,x0,mu);plot(t1,y1,t2,y2,:)figure;plot(y1(:,1),y1(:,2),y2(:,1),y2(:,2),:),26,x0=2;0;t_final=3000;mu=1000;t,y=ode45(vdp_eq,0,t_final,x0,mu);由于变步长所采用的步长过小,所需时间较长,导致输出的y矩阵过大,超出计算机存储空间容量。所以不适合采用ode45()来求解,可用刚性方程求解算法ode15s()。,27,7。

11、.2.4.2高阶常微分方程组的变换方法,28,例:,29,30,描述函数:functiondx=apolloeq(t,x)mu=1/82.45;mu1=1-mu;r1=sqrt(x(1)+mu)2+x(3)2);r2=sqrt(x(1)-mu1)2+x(3)2);dx=x(2);2*x(4)+x(1)-mu1*(x(1)+mu)/r13-mu*(x(1)-mu1)/r23;x(4);-2*x(2)+x(3)-mu1*x(3)/r13-mu*x(3)/r23;,31,求解:x0=1.2;0;0;-1.04935751;tic,t,y=ode45(apolloeq,0,20,x0);tocelap。

12、sed_time=0.8310length(t),plot(y(:,1),y(:,3)ans=689得出的轨道不正确,默认精度RelTol设置得太大,从而导致的误差传递,可减小该值。,32,改变精度:options=odeset;options.RelTol=1e-6;tic,t1,y1=ode45(apolloeq,0,20,x0,options);tocelapsed_time=0.8110length(t1),plot(y1(:,1),y1(:,3),ans=1873,33,min(diff(t1)ans=1.8927e-004plot(t1(1:end-1),diff(t1),34,例。

13、:,35,x0=1.2;0;0;-1.04935751;tic,t1,y1=rk_4(apolloeq,0,20,0.01,x0);tocelapsed_time=4.2570plot(y1(:,1),y1(:,3)%绘制出轨迹曲线显而易见,这样求解是错误的,应该采用更小的步长。,36,tic,t2,y2=rk_4(apolloeq,0,20,0.001,x0);tocelapsed_time=124.4990计算时间过长plot(y2(:,1),y2(:,3)%绘制出轨迹曲线严格说来某些点仍不满足106的误差限,所以求解常微分方程组时建议采用变步长算法,而不是定步长算法。,37,例:,38,。

14、用MATLAB符号工具箱求解,令symsx1x2x3x4dx,dy=solve(dx+2*x4*x1=2*dy,dx*x4+3*x2*dy+x1*x4-x3=5,dx,dy)dx=-2*(3*x4*x1*x2+x4*x1-x3-5)/(2*x4+3*x2)dy=(2*x42*x1-x4*x1+x3+5)/(2*x4+3*x2)对于更复杂的问题来说,手工变换的难度将很大,所以如有可能,可采用计算机去求解有关方程,获得解析解。如不能得到解析解,也需要在描写一阶常微分方程组时列写出式子,得出问题的数值解。,39,7.3特殊微分方程的数值解7.3.1刚性微分方程的求解,刚性微分方程一类特殊的常微分方程。

15、,其中一些解变化缓慢,另一些变化快,且相差悬殊,这类方程常常称为刚性方程。MATLAB采用求解函数ode15s(),该函数的调用格式和ode45()完全一致。t,x=ode15s(Fun,t0,tf,x0,options,p1,p2,),40,例:计算h_opt=odeset;h_opt.RelTol=1e-6;x0=2;0;t_final=3000;tic,mu=1000;t,y=ode15s(vdp_eq,0,t_final,x0,h_opt,mu);tocelapsed_time=2.5240,41,作图plot(t,y(:,1);figure;plot(t,y(:,2)y(:,1)曲线。

16、变化较平滑,y(:,2)变化在某些点上较快。,42,例:定义函数functiondy=c7exstf2(t,y)dy=0.04*(1-y(1)-(1-y(2)*y(1)+0.0001*(1-y(2)2;-104*y(1)+3000*(1-y(2)2;,43,方法一tic,t2,y2=ode45(c7exstf2,0,100,0;1);tocelapsed_time=229.4700length(t2),plot(t2,y2)ans=356941,44,步长分析:formatlong,min(diff(t2),max(diff(t2)ans=0.000222206938840.002149717。

17、87184plot(t2(1:end-1),diff(t2),45,方法二,用ode15s()代替ode45()opt=odeset;opt.RelTol=1e-6;tic,t1,y1=ode15s(c7exstf2,0,100,0;1,opt);tocelapsed_time=0.49100000000000length(t1),plot(t1,y1)ans=169,46,7.3.2隐式微分方程求解,例:,47,编写函数:functiondx=c6ximp(t,x)A=sin(x(1)cos(x(2);-cos(x(2)sin(x(1);B=1-x(1);-x(2);dx=inv(A)*B;求解:opt=odeset;opt.RelTol=1e-6;t,x=ode45(c7ximp,0,10,0;0,opt);plot(t,x),48,49。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值