基于MATLAB的高阶常微分方程组求解(附完整代码)

目录

一. 单个高阶常微分方程

例题1

二. 高阶常微分方程组

例题2

三. 刚性微分方程

例题3

例题4

四. 隐式微分方程

例题5


一. 单个高阶常微分方程

一个高阶常微分方程的一般形式如下:

y^{(n)}=f(t,y,\dot y,\cdots,y^{(n-1)})

输出变量y(t)的各阶导数初始值为如下:

y(0),\dot y(0),\cdots,y^{(n-1)}(0)

选择一组状态变量如下:

x_1=y,x_2=\dot y,\cdots,x_n=y^{(n-1)}

原高阶常微分方程模型可以变换为如下:

\begin{cases} \dot x_1=x_2\\ \dot x_2=x_3\\ \quad \vdots\\x_n=f(t,x_1,x_2,\cdots,x_n) \end{}

初值转换为如下:

x_1(0)=y(0),x_2(0)=\dot y(0),\cdots,x_n(0)=y^{(n-1)}(0)

例题1

已知边界值如下:

y(0)=-0.2,y'(0)=-0.7

用数值的方法求Van der Pol方程的解,如下:

\ddot y+\mu(y^2-1)\dot y+y=0

解:

首先做一个小小的转变:

x_1=y,\quad x_2=y'

范德坡方程的函数描述如下:

function y=vdp_eq(t,x,flag,mu)
y=[x(2);-mu*(x(1)^2-1)*x(2)-x(1)];
clc;clear;

x0=[-0.2,-0.7];
t_final=20;

mu=1;
[t1,y1]=ode45('vdp_eq',[0,t_final],x0,[],mu);

mu=2;
[t2,y2]=ode45('vdp_eq',[0,t_final],x0,[],mu);

plot(t1,y1,t2,y2,':')
figure;
plot(y1(:,1),y1(:,2),y2(:,1),y2(:,2),':')

运行结果:

 实际上,由于变步长所采用的步长过小,所需时间较长,会导致输出的y矩阵过大,会超出计算机存储空间容量。此时就不适合用ode45()函数来求解,可以用刚性方程求解算法ode15s()

二. 高阶常微分方程组

高阶常微分方程的通式如下:

选择状态变量,如下:

于是,原方程组就可以变成如下形式: 

 此过程的主题思想就是高阶变一阶,以方便使用ode 45函数。

例题2

解:

选择一组状态变量,如下:

x_1=x,x_2=\dot x,x_3=y,x_4=\dot y

由此得出一阶常微分方程组,如下:

 此题MATLAB有两个文件。

(1)函数文件

function dx=apolloeq(t,x)
mu=1/82.45;
mu1=1-mu;
r1=sqrt((x(1)+mu)^2+x(3)^2);
r2=sqrt((x(1)-mu1)^2+x(3)^2);
dx=[x(2);
    2*x(4)+x(1)-mu1*(x(1)+mu)/r1^3-mu*(x(1)-mu1)/r2^3;
    x(4);
    -2*x(2)+x(3)-mu1*x(3)/r1^3-mu*x(3)/r2^3];

(2)主运行文件

clc;clear;
x0=[1.2;0;0;-1.04935751];
options=odeset;options.RelTol=1e-6;
[t1,y1]=ode45('apolloeq',[0,20],x0,options);
plot(y1(:,1),y1(:,3))

运行结果:

三. 刚性微分方程

刚性微分方程是一类特殊的常微分方程,其中一些解变化缓慢,另一些变化快,且两者相差悬殊。此时可用ode15s()函数求解,该函数的调用格式与ode45()完全一样。如下:

[t,x]=ode15s(Fun,[t0,tf],x0,options,p1,p2,···)

例题3

求解\mu=1000时的Van der Pol方程的数值解。

\ddot y+\mu(y^2-1)\dot y+y=0

解:

此题有两个文件。

(1)微分描述文件

function y=vdp_eq(t,x,flag,mu)
y=[x(2);-mu*(x(1)^2-1)*x(2)-x(1)];

(2)主运行文件

clc;clear;

%计算范德坡方程
h_opt=odeset;h_opt.RelTol=1e-6;
x0=[2;0];
t_final=3000;
mu=1000;
[t,y]=ode15s('vdp_eq',[0,t_final],x0,h_opt,mu);
plot(t,y(:,1));
figure,
plot(t,y(:,2))

运行结果:

第一个曲线变化较为平滑,第二个曲线在某些点上变化较快。

例题4

该题求数值解,初值为如下:

y_1(0)=0,y_2(0)=1

计算区间为t\in (0,100) 

 原微分方程如下:

\begin{cases}\dot y_1=0.04(1-y_1)-(1-y_2)y_1+0.0001(1-y_2)^2\\ \dot y_2=-10^4y_1+3000(1-y_2)^2 \end{}

解:

(1)函数文件

%定义函数
function dy=c7exstf(t,y)
dy=[0.04*(1-y(1))-(1-y(2))*y(1)+0.0001*(1-y(2))^2;...
    -10^4*y(1)+3000*(1-y(2))^2];

(2)主运行文件

clc;clear;

%方法一
[t2,y2]=ode45('c7exstf',[0,100],[0;1]);
plot(t2,y2)
format long
step1=[min(diff(t2)),max(diff(t2))] %步长分析
figure,
plot(t2(1:end-1),diff(t2))

%方法二:用ode15s()代替ode45()
opt=odeset;opt.RelTol=1e-6;
[t1,y1]=ode15s('c7exstf',[0,100],[0;1],opt);
figure,
plot(t1,y1)
figure,
plot(t1(1:end-1),diff(t1))

运行结果:
step1 = 0.000222206938844   0.002149717871840

四. 隐式微分方程

隐式微分方程是不能转为显式常微分方程组的方程。

例题5

已知x_1(0)=x_2(0)=0,求以下方程的数值解。

\begin{cases}sinx_1\dot x_1+cosx_2\dot x_2+x_1=1\\-cosx_2\dot x_1+sinx_1\dot x_2+x_2=0 \end{}

解:

x=[x_1,x_2]^T,原方程改写成:

A(x)\dot x=B(x)

其中A(x)与B(x)为如下:

A(x)=\begin{bmatrix}sinx_1&cosx_2\\-cosx_2&sinx_1 \end{},\quad B(x)=\begin{bmatrix}1-x_1\\-x_2 \end{}

B(x)为右端项。

(1)函数文件

function dx=c7ximp(t,x)
A=[sin(x(1)) cos(x(2));-cos(x(2)) sin(x(1))];
B=[1-x(1);-x(2)];
dx=inv(A)*B;

 (2)主运行文件

clc;clear;
%求解
opt=odeset;opt.RelTol=1e-6;
[t,x]=ode45('c7ximp',[0,10],[0;0],opt);
plot(t,x) %变步长

运行结果:

  • 21
    点赞
  • 196
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
Matlab可以用来求解高阶常微分方程。在给定初始条件的情况下,可以使用ode45函数来求解。ode45是一个常用的Matlab函数,用于求解非刚性和刚性的常微分方程。 使用ode45函数时,需要先定义一个.m文件,其中包含了对应的常微分方程。在这个文件中,你可以定义一个函数,用来描述常微分方程求解过程。这个函数需要接受两个参数,一个是自变量t,另一个是待求解的因变量y。在函数中,你可以定义常微分方程的具体形式,并返回求解后的结果。 例如,如果要求解一个二阶常微分方程y''=2x/(1-x^2)*y(2),可以定义一个.m文件,命名为df3.m,其中的代码如下: function dy = df3(x,y) dy=zeros(2,1); % 列向量 dy(1)=y(2); dy(2)=(2*x)/(1-x^2)*y(2); end 然后,在主程序中调用ode45函数来求解这个方程。例如,假设要求解在初始条件y(0)=0和y'(0)=1时的,代码如下: [t,y] = ode45(@df3,[0,10],[0,1]); 其中,@df3表示对df3函数的引用,[0,10]表示要求解的时间区间,[0,1]表示初始条件。求解结果将保存在t和y两个变量中,分别表示时间和对应的。 需要注意的是,对于高阶常微分方程,可以通过引入新的变量来将其转化为一一阶常微分方程进行求解。因此,在编写对应的.m文件时,需要根据具体的方程形式进行变量的定义和计算。 综上所述,使用Matlab可以方便地求解高阶常微分方程,并得到对应的。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [用MATLAB高阶微分方程()数值](https://blog.csdn.net/qq_42107431/article/details/122683952)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [基于MATLAB高阶常微分方程求解完整代码)](https://blog.csdn.net/forest_LL/article/details/124547981)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唠嗑!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值