python pdf 数据转excel 表格_python实现PDF中表格转化为Excel的方法

本文介绍了如何使用Python的pdfplumber库将包含表格的PDF文件转换成Excel格式。通过解析PDF,提取表格数据并利用pandas写入Excel文件,实现了对PDF中表格的便捷处理。
摘要由CSDN通过智能技术生成

这几天想统计一下《中国人文社会科学期刊 AMI 综合评价报告(2018 年):A 刊评价报告》中的期刊,但是只找到了该报告的PDF版,对于表格的编辑不太方便,于是想到用Python将表格转成Excel格式。

看过别人写的博客,发现Python解析PDF有以下四种方式:

-pdfminer:擅长文字的解析,把表格解析成普通的文本,没有格式;

-pdf2html:把pdf解析成html,但html的标签并没有规律,解析一个表格还可以,多个表格的话不太好提取;

-tabula:对于简单的表格,即单元格中没有换行的,表头表尾形式不复杂的,使用比较方便。但是单脑需要Java环境;

-pdfplumber:是一个可以处理pdf格式信息的库。可以查找关于每个文本字符、矩阵、和行的详细信息,也可以对表格进行提取并进行可视化调试。

本文采用pdfplumber库读取PDF中的表格,运行环境:Python3.5.2,Anaconda4.2.0。首先简单介绍一下pdfplumber库:

-pdfplumber.pdf中包含了.metadata和.pages两个属性:

.metadata是一个包含pdf信息的字典。

.pages是一个包含页面信息的列表。

-pdfplumber.page的类中包含的主要的属性:

.page_number 页码。

.width 页面宽度。

.height 页面高度。

.objects/.chars/.lines/.rects 这些属性中每一个都是一个列表,每个列表都包含一个字典,每个字典用于说明页面中的对象信息, 包括直线,字符, 方格等位置信息。

-一些常用的方法:

.extract_text() 用来提页面中的文本,将页面的所有字符对象整理为的那个字符串。

.extract_words() 返回的是所有的单词及其相关信息。

.extract_tables() 提取页面的表格。

.to_image() 用于可视化调试时,返回PageImage类的一个实例。

import pdfplumber

import pandas as pd

path = 'test.pdf'

pdf = pdfplumber.open(path)

i=1

#writer=pd.ExcelWriter('output.xlsx')

df=pd.DataFrame(columns=['序号','刊名','主办单位','等级'])

sheetname=['考古文博','历史学','马克思主义理论','民族学与文化学','文学-外国文学','文学-中国文学','艺术学','语言学','哲学','宗教学','法学'

,'管理学','环境科学','教育学','经济学-财政科学','经济学-工业经济','经济学-金融','经济学-经济管理','经济学-经济综合','经济学-贸易经济'

,'经济学-农业经济','经济学-世界经济','人文地理学','社会学','体育学','统计学','图书馆情报与档案学','心理学','新闻学与传播学'

,'政治学-国际政治','政治学-中国政治','综合-高校综合性学报','综合-综合性人文社科期刊']

##由于存在一个表格跨页的情况,先将所有表格存放在一个DataFrame中,再根据序号拆分。

for page in pdf.pages[17:59]:

print (page)

# 获取当前页面的全部文本信息,包括表格中的文字

# print(page.extract_text())

for table in page.extract_tables():

#print(table)

df=df.append(pd.DataFrame(table[1:],columns=table[0]),ignore_index=True)

print (df)

writer=pd.ExcelWriter('output3.xlsx')

new_df=pd.DataFrame()

j=1

index=[]

#记录序号==1的行索引,用于后面的表格拆分

for i in range(len(df)):

if df.ix[i,0]=='1':

index.append(i)

print ("################")

index.append(len(df))

#print (index)

#按行索引将内容切片并逐个添加到表中

for t in range(len(index)-1):

new_df=df.ix[index[t]:index[t+1]-1,:]

#print (new_df)

new_df.to_excel(writer,sheet_name=sheetname[t],encoding='gb2312',index=None)

writer.save()

pdf.close()

print('finished')

最终保存为Excel。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持python博客。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值