0、安装前环境说明
ubuntu:LTS18.04.02
显卡型号:NVIDIA GeForce 940MX
1、安装NVIDIA 940MX显卡驱动390
- 安装之前,先进BIOS,把安全启动关了Secure Boot disable ;
- ubuntu系统终端命令行:
ubuntu-drivers devices
- 按照提示选择NVIDIA官方驱动并安装,
sudo apt install nvidia-driver-390
- 重启
- 检查是否成功,
nvidia-smi
参考文献:
- https://linuxconfig.org/how-to-install-the-nvidia-drivers-on-ubuntu-18-04-bionic-beaver-linux#h7-automatic-install-using-ppa-repository-to-install-nvidia-beta-drivers
- https://blog.csdn.net/tjuyanming/article/details/80862290
2、安装CUDA9.0
3、安装cuDNN7.4.1
Ubuntu18.04+CUDA9.0+cuDNN7.1.3+TensorFlow1.8 安装总结
Ubuntu18.04下安装Cudnn9.0和Cuda7.0
4、安装anaconda2018.12
5、安装tensorflow1.12
爆详细Ubuntu18.04,CUDA9.0,OpenCV3.1,Tensorflow完全配置指南cuDNN安装中软连接这一步很重要这一步能够解决下面的问题
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
6、安装keras
conda activate tensorflow进入环境
pip install keras
小结:
装了一天,按照上面几个教程依次安装,都比较顺利,一直到在终端python下都能import tensorflow as tf。但是在vscode上import tensorflow不成功,提示ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory,按照上面的教程,解决了报错,但是程序跑不通,“已终止",最后找到原因,是覆盖cuDNN之后漏了一步,做完这一步,就全部通了。
sudo rm -rf libcudnn.so libcudnn.so.5 #删除原有动态文件
sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5 #生成软衔接
sudo ln -s libcudnn.so.5 libcudnn.so #生成软衔接