python中的jieba分词使用手册_Python jieba结巴分词原理及用法解析

1、简要说明

结巴分词支持三种分词模式,支持繁体字,支持自定义词典

2、三种分词模式

全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义

精简模式:把句子最精确的分开,不会添加多余单词,看起来就像是把句子分割一下

搜索引擎模式:在精简模式下,对长词再度切分

# -*- encoding=utf-8 -*-

import jieba

if __name__ == '__main__':

str1 = '我去北京天安门广场跳舞'

a = jieba.lcut(str1, cut_all=True) # 全模式

print('全模式:{}'.format(a))

b = jieba.lcut(str1, cut_all=False) # 精简模式

print('精简模式:{}'.format(b))

c = jieba.lcut_for_search(str1) # 搜索引擎模式

print('搜索引擎模式:{}'.format(c))

运行

3、某个词语不能被分开

# -*- encoding=utf-8 -*-

import jieba

if __name__ == '__main__':

str1 = '桃花侠大战菊花怪'

b = jieba.lcut(str1, cut_all=False) # 精简模式

print('精简模式:{}'.format(b))

# 如果不把桃花侠分开

jieba.add_word('桃花侠')

d = jieba.lcut(str1) # 默认是精简模式

print(d)

运行

4、 某个单词必须被分开

# -*- encoding=utf-8 -*-

import jieba

if __name__ == '__main__':

# HMM参数,默认为True

'''HMM 模型,即隐马尔可夫模型(Hidden Markov Model, HMM),是一种基于概率的统计分析模型,

用来描述一个系统隐性状态的转移和隐性状态的表现概率。

在 jieba 中,对于未登录到词库的词,使用了基于汉字成词能力的 HMM 模型和 Viterbi 算法,

其大致原理是:

采用四个隐含状态,分别表示为单字成词,词组的开头,词组的中间,词组的结尾。

通过标注好的分词训练集,可以得到 HMM 的各个参数,然后使用 Viterbi 算法来解释测试集,得到分词结果。

'''

str1 = '桃花侠大战菊花怪'

b = jieba.lcut(str1, cut_all=False, HMM=False) # 精简模式,且不使用HMM模型

print('精简模式:{}'.format(b))

# 分开大战为大和战

jieba.suggest_freq(('大', '战'), True)

e = jieba.lcut(str1, HMM=False) # 不使用HMM模型

print('分开:{}'.format(e))

运行

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

本文标题: Python jieba结巴分词原理及用法解析

本文地址: http://www.cppcns.com/jiaoben/python/361632.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值