gauss-jordan法 matlab,[转载]Gauss-Jordan消去法(转载)

两个方程叠加一般可以消去一个元。类似的,对于一个N*N线性方程组,N个方程叠加,理应存在N个叠加系数,使得叠加后消去N-1个元,那么这些系数是怎么样的呢?如果能得到这些系数,就可以直接叠加N个方程,得到只含一个元的一次方程(因已消去N-1个元),这样,对每个未知元,都可以通过这个叠加变成仅含该元的一次方程,从而获得解。下面讨论这些叠加系数应满足的条件。设N*N的方程如下:

a(1,1)*x(1)+a(1,2)*x(2)+…+a(1,n)*x(n)=b(1) (1)

a(2,1)*x(1)+a(2,2)*x(2)+…+a(2,n)*x(n)=b(2) (2)

…………………………………………………………

a(n,1)*x(1)+a(n,2)*x(2)+…+a(n,n)*x(n)=b(n) (n)

我们假设消去N-1个元后剩下的未知数为x(i),叠加系数分别为c(i,1),c(i,2),…,c(i,n)。那么叠加后的方程为:c(i,1)*(1)

+c(i,2)*(2) +…+c(i,n)*(n)。即:

[c(i,1)*a(1,1)+c(i,2)*a(2,1)+…+c(i,n)*a(n,1)]x(1)

+[c(i,1)*a(1,2)+c(i,2)*a(2,2)+…+c(i,n)*a(n,2)]x(2)

+……………………………………………………

+[c(i,1)*a(1,i)+c(i,2)*a(2,i)+…+c(i,n)*a(n,i)]x(i)

+…………………………………………………

+[c(i,1)*a(1,n)+c(i,2)*a(2,n)+…+c(i,n)*a(n,n)]x(n)

=c(i,1)*b(1) +c(i,2)*b(2) +…+c(i,n)*b(n)

按要求,除x(i)的系数不为零之外,其他未知数的系数应该为零,另外,考虑到叠加系数全部乘上一个非零常数之后的效果一样,于是可假设x(i)的系数为1,于是:

c(i,1)*a(1,1)+c(i,2)*a(2,1)+…+c(i,n)*a(n,1)=0

c(i,1)*a(1,2)+c(i,2)*a(2,2)+…+c(i,n)*a(n,2)=0

…………………………………………………

c(i,1)*a(1,i)+c(i,2)*a(2,i)+…+c(i,n)*a(n,i)=1

…………………………………………………

c(i,1)*a(1,n)+c(i,2)*a(2,n)+…+c(i,n)*a(n,n)=0

这样相当于一个N*N的线性方程组,它仅跟原方程的系数矩阵A={a(i,j)}有关,对每个i,都对应于这样一个向量{c(i,j),j从1到n},这些向量(共N个)可以组成一个新的矩阵C={c(i,j)},不难知道,C的第i行乘以A的第j列刚好是delta符号:δ(i,j)(i等于j时为1,i不等于j时为0),其实就是说:CA=E为单位矩阵。于是,C就是A的逆矩阵。

从上面的分析指导,求叠加系数的结果归结为求系数矩阵的逆。求出叠加系数后,很容易写出:x(i)=c(i,1)*b(1)

+c(i,2)*b(2)

+…+c(i,n)*b(n)。Gauss-Jordan消去法就是用来求C,即系数矩阵的逆的一种方法,由于求C相当于解N个线性方程组,而且这些方程组的系数矩阵都一样,于是可以Gauss消去法变系数矩阵为上三角阵之后,继续消元,变成对角阵,再分别求解即可,右端的N个向量可以同时计算。

Gauss-Jordan消去法原理:为若[A E]可以通过初等行变换变为[E

C],则C与A互逆。证明是很简单的,注意到矩阵的初等行变换相当于左乘一个初等矩阵P,所以P[A E]=[E

C],即PA=E,PE=C,于是CA=E,即C与A互逆。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值