- 博客(76)
- 资源 (3)
- 收藏
- 关注
原创 【置顶博客目录】站内文章目录
一、数学&运筹优化1 线性代数01 Gauss-Jordan(高斯-诺尔当)算法:消两个算什么?我一次消N个02 线性方程组的解的情况(矩阵的秩)03 齐次/非齐次线性方程组的解(行列式与解的关系)04 行列式的性质:举一反三,从三个到十个05 齐次/非齐次线性方程组的具体解集06 矩阵的逆以及求法07 克拉默法则(Cramer)08 矩阵的相似与矩阵的幂(相似对角化)...
2019-09-28 16:50:33 282
原创 【Anaconda】Macbook环境中添加python第三方库
0 前言在macbook中,如果使用anaconda进行python代码的编写,通常使用的库将会统一安装好,而有些第三方库若没有,则需要通过mac本身的终端进行下载。本篇会介绍如何直接通过远程的方式下载第三方库,以及如何通过下载到本地的方式安装第三方库。1 两种不同的安装方式:远程下载,本地安装1.1 远程下载这种是较为通用的方式,直接通过以下命令安装即可:conda install 库名pip install 库名优点是比较方便。缺点是一般而言速度较慢,且有时会因为远程网络不稳定或者
2021-04-04 17:41:10 3227 1
转载 【转载】香农熵-从物理中的熵出发讨论
zhua 偶然看到一篇介绍香农熵的文章,写得浅显易懂,翻译过来,与大家一起学习!原文:Shannon Entropy, Information Gain, and Picking Balls from Buckets参考视频:Inform.
2020-08-29 22:48:30 333
原创 【统计学01】概括性描述-集中趋势,离散程度,分布形状度量
1 离散程度度量一组数据的离散程度是数据分布的重要特征。定义:离散程度用于衡量各变量值距离其中心值的程度,离散程度越大,则代表用于代表集中趋势的度量值对于这一组数据的代表性也越差。1.1 分类数据:异众比率因为分类数据一般采用众数来代表其集中趋势,因此对于分类数据,一般采用异众比率来衡量数据的离散程度。通俗的解释就是,不是众数的数所占的比例。数学表达为:Vr=∑fi−fm∑fiV_r=\frac{\sum f_i-f_m}{\sum f_i}Vr=∑fi∑fi−fm其中∑fi\su
2020-08-23 12:54:42 11834 2
原创 【统计学】关于Z score 的一切(如何由一组数据转变为 平均值为0;方差为1的一组数据)
导读:通常我们使用方差、标准差来度量一组数据的离散程度,但是如果想要度量单个变量在一组数据中的相对离散位置,我们则会使用** Zscore**也称 标准分数 Standard score来衡量。Zi=xi−xˉsZ_i=\frac{x_i-\bar x}{s}Zi=sxi−xˉ下面,通过公式的推导来论证一下使用“Z score”来标记相对位置的合理性和逻辑性。1 z score构成的数据集合为什么均值为0假设现有一组数据x1,x2,....xn{x_1,x_2,....x_n}x1,x.
2020-08-23 09:13:47 2687 1
原创 【数据处理】【使用技巧2】SAS/SQL 根据共同字段将两行数据进行汇总合并
导读: 最近在数据处理和分析过程中,遇到一个问题:用户A在不同的月份具有两个分数,如何使用SAS来汇总这个分数使得其变成一行中的两个字段。问题实例:xaccountscorescore_date190020200731180020200831转化为:xaccountscore_firstscore_last1900800解法: 通过SAS的retain+first+last实现合并data a;input xaccount
2020-08-22 22:03:45 2885 2
原创 【机器学习】【无监督学习】【算法01-理论2】Apiori算法-关联规则获取
之前的章节分析了如何从原始数据集合中获取频繁项集,并且给出了代码演示,如需要请访问以下链接【机器学习】【无监督学习】【算法01-理论1】Apiori算法-筛选频繁集【机器学习】【无监督学习】【算法01-代码实现】Apiori算法-筛选频繁集接下来进行关联分析的第二个步骤讲解:关联规则获取1 理论解释在筛选频繁集的理论部分,我们已经提到关联分析其实总共就是两个步骤:频繁项集发现、关联规...
2020-04-02 22:14:39 581
原创 【机器学习】【无监督学习】【算法01-代码实现】Apiori算法-筛选频繁集
本节将会对于Apriori算法的频繁集筛选过程,进行代码的展示1 回顾上节提到,对于Apriori算法来说,其核心价值是在关联分析的两个过程,即筛选频繁项集、关联规则获取的过程中,使得过程更加简便。首先,回顾一下Apriori算法中使得计算过程变得简便的原理(Apriori原理):如果某个项集是频繁的,那么它的所有子集也是频繁的反之,如果一个项集是非频繁集,那么 它的所有超集也是非...
2020-03-31 18:10:43 958
原创 【机器学习】【无监督学习】【算法01-理论1】Apiori算法-筛选频繁集
Apriori算法Apriori算法是一种用于进行关联分析的算法,在Agrawal 等人提出的1993最初提出的动机是针对购物篮分析问题提出的,其目的是为了发现交易数据库中不同商品之间的联系规则。接着,有更多的研究人员加入了关联规则的发掘研究中来,今天先暂时介绍最经典的Apriori算法1.引入关联分析:关联分析指的是在大规模数据集和中寻找关系的任务。一般来说,数据集合中的关系分为两...
2020-03-30 16:50:02 694
原创 【数据处理】【使用技巧1】Python中,按照特定元素对List进行切割
导读: 在所有的数据分析过程,数据处理环节费时费力,数据的不工整或者数据的一些特定,以及我们想要处理的角度不同,都会带来一些处理上的问题。问题阐述: 对于一个Python中的List,若是想要根据某一元素对List进行切割,使得前后划分为两个不同的列表并返回如何操作?适用背景: 例如对于数据带有周期性标志的数据。或者是你想要相同元素之间的一段数据。参数解释: list_ori:传入的想要处理...
2019-12-26 15:10:59 4741
原创 【机器学习】【监督学习】【算法01-实例03】K近邻(k-nearest neighbor)-手写识别
0 数据说明手写识别也是一个非常经典的应用实例。在本次应用当中,数据的格式如下:File name:‘_’为划分,前为标签,后为例子数。例如‘0_0’就是0的手写体的第一个实例。内容:文本内容为32×32 的1-0像素存储的点,如果使用img可视化,可以看到黑白的数字的效果。待会需要处理成1*1024矩阵的形式。1 数据处理这一步需要比较注意的点是:使用readline()方法...
2019-12-17 15:51:57 245
原创 【机器学习】【监督学习】【算法01-实例01】K近邻(k-nearest neighbor)-改进约会网站的配对效果
数据以及代码参考来源:<机器学习实战>0.必要的库from numpy import *from KNN import classify0 #这里存的是我写在KNN.py中的分类器代码import matplotlibimport matplotlib.pyplot as plt1.获得数据:从文本中读取数据注意:笔者在这里对此函数进行了修改,主要是添加了...
2019-12-16 21:10:55 234
原创 【机器学习】【监督学习】【算法01-代码实现】K近邻(k-nearest neighbor)实现细节
根据在《机器学习实战》这本书的代码和演示实例,给出KNN算法的实现细节,其中也包括一些数据分析中常用的用法的构建。1.KNN分类器构建#四个参数,分别是待判定的向量x,训练集,标签,k值def classify0(inX,dataSet,lables,k): # 计算dataSet第一维的长度,一般来说,这里计算的就是实例个数 #请注意,这里的0是数组中的用法,指的是0维,这...
2019-12-16 19:36:48 339
原创 【LP】02 Preliminaries
02 PreliminariesOutlineStandard form LP / LP的标准形式Embedded assumptions /一个问题想要变成一个LP问题,就一定有一些内含的假设。我们要去探究到底有哪些假设的条件时,我们可以使用这个优化的模型。Converting to standard form / 转变成标准形式对于不是标准形式的形式,我们如何对其转换...
2019-09-29 21:43:39 401
原创 【机器学习】【监督学习】【算法01-实例02】K近邻(k-nearest neighbor)-鸢尾花
鸢尾花的分类实例是一个非常经典的例子。我们首先从数据集的结构特点来开始。1.数据集的加载# 从sklearn.datasets 导入 iris数据加载器。from sklearn.datasets import load_iris# 使用加载器读取数据并且存入变量iris。iris = load_iris()# 查验数据规模。#如果想要在pycharm这类的编辑器里面显示,加上pri...
2019-09-29 18:06:41 579
原创 【机器学习】【监督学习】【算法01—理论】K近邻(k-nearest neighbor)
从本节博客开始,我们直接进入具体的机器学习算法以及应用上,笔者暂时的想法是每一个算法都分成两个部分。第一个部分是算法原理,包括算法的描述,数学的内容。第二部分是一个应用的实例,来加深对于算法的理解。K-近邻算法KNN算法是由Cover和Hart在1968年提出,是一种简单而典型的机器学习的监督式学习算法。今天要整理的K-近邻算法是监督学习中最简单的一种,如果简单实现的话,我们只需要提...
2019-09-29 12:03:14 443
原创 【竞赛02-b】元胞自动机
0 引入我们在介绍或者了解一个东西之前,我个人认为比较好的地方就是1 元胞自动机概念/定义标准元胞自动机是一个由「元胞、元胞状态、邻域和状态更新规则」构成的四元组,用数学符号可以表示为A=(L,d,S,N,f)A代表一个元胞自动机系统L表示元胞空间d表示元胞自动机内元胞空间的维数,是一正整数S是元胞有限的、离散的状态集合N表示某个邻域内所有元胞的集合f表示局部映射或局部规则。...
2019-09-28 20:09:03 2989 1
原创 【竞赛02-a】【题解】第十二届电工杯全国大学生数学建模大赛B题
赛题:第十二届电工杯全国大学生数学建模大赛B题露天停车场停车位优化设计问题的研究摘要本文针对露天停车场停车位优化问题,考虑不同类型停车场中,在确保车辆进出自由的情况下,综合考虑停车场地、消防等各方面限制因素,以提高停车场空间利用率,使停车场获得较大停车能力为目标,建立停车场车辆停放优化模型,得到停车场设计方案及平面示意图,并检验了模型的实用性和算法的有效性。对于问题一,在规定车辆出...
2019-09-28 17:49:55 7701 7
原创 【LP】00 Pre-Introduction and 01 Introduction
从本博文开始,将持续更新方述诚教授在南卡罗来纳大学教授的研究生课程《Linear Programming》中的内容,视频由于一些原因无法上传,这里有一个可以提供参考的一个pdf文件,下面给出网址:方述诚-线性规划讲解资料00 pre-introduceOutlinecourse objectivepre-requisites(预备知识)course content(课程内容...
2019-09-28 15:56:04 850 1
原创 【竞赛01-b】【论文】济南大学第七届数学建模比赛A题论文详解
笔者在18年五月底参加了济南大学第七届数学建模校赛,现在将论文贴出,在博文中,将整理出论文中核心的详细知识点基于 MATLAB 的数字图像处理模型1 摘要本文利用 MATLAB 等工具对题目给出图像进行数字化处理,通过均值法,权 值法,梯度值求解轮廓法,插值法,自动定位人脸等多种不同的方法实现了对问 题一到五的计算机求解和数学模型建立。对于问题一,将人脸部分的像素点三维矩阵分为若干...
2019-09-28 10:35:35 1665
原创 【竞赛01-a】【题目】济南大学第七届数学建模比赛A题
济南大学第七届数学建模比赛A题A题 图像处理——原来如此!对于年轻人,自拍和修图是一个常见的娱乐形式。即使一个普通的智能手机,也可以轻松进行各种图像处理,以获取自己想要的效果。那么,这些图像处理的功能是如何实现的呢?利用MATLAB的imread命令,可以获得一张彩色图片的三维矩阵;反之,也有将符合要求的矩阵转化为图片的命令。所谓的图像处理,实际上就是利用一些数学方法修改图片矩阵中的数据,从...
2019-09-28 09:05:33 484
原创 线性代数05 齐次/非齐次线性方程组的具体解集
通过线性代数系列博客03,我们了解了齐次线性方程组与非齐次线性方程组,了解了线性方程组的系数矩阵的行列式与解的情况的关系。接下来我们就要探究,如果我们需要具体求解线性方程,我们需要怎么做?在具体了解求解线性方程组的过程之前,我们需要先明确几个概念。1 明确概念(1)齐次线性方程组:常数项全为0的线性方程组(2)齐次线性方程组的解的情况:零解,或者非零解。在这里,我们只需要讨论非零解...
2019-09-27 17:24:28 17848 2
原创 线性代数09 特征值与特征向量
在上一节我们提出了对于矩阵求幂的运算,关键在于找到一个可逆矩阵P,使得A可以化成对角矩阵D。而这个逆矩阵能否找到,就在于能不能找到n个线性无关的向量满足:Aai=λiaiAa_{i}=\lambda_{i}a_{i} Aai=λiai对于这个式子,我们引入了一个专门的概念来求解这其中的λ和列向量。1 特征值与特征向量如果对于矩阵A来说,有非零列向量使得:Aa=λ0a ...
2019-09-27 17:12:26 423
原创 线性代数08 矩阵的相似与矩阵的幂(相似对角化)
从本节开始,就不再关注线性方程组的解的结果或者具体的解如何求出。而是开始转而去关注矩阵的一些性质和拓展内容,这一节我将会介绍矩阵相似的概念。以及这个矩阵的相似的意义。先观察以下公式:若存在可逆矩阵P,使得一个关于矩阵A的等式如下成立:A=(PDP−1)A=(PDP^{-1})A=(PDP−1)我们称符合这样关系的的矩阵A与D是相似的记作A~D则A的幂可以通过求矩阵D的幂求得Am...
2019-09-27 16:33:42 4681
原创 线性代数07 克拉默法则(Cramer)
至此为止我们已经掌握了一些关于线性方程组的解的线性代数内的内容,在开始这一章的博客之前,我先来个小结:①利用系数矩阵的秩来判断解的情况②利用系数矩阵的行列式来判断解的情况③齐次/非齐次线性方程组的通解求解方法④矩阵的逆与方程的解的关系,并给出了矩阵的逆的求法1 克拉默法则(1)适用条件:只适用于n个方程,n个未知量,且具有唯一解的情况(因为要使用到系数矩阵的行列式,且行列式|A|≠0)...
2019-09-27 15:08:41 36828
原创 线性代数06 矩阵的逆以及求法
我们已经了解了对于方程组来说,如何根据他的系数矩阵的变化,来实现高斯-诺尔当消元算法,并可以快速的判断方程组的解的情况。这样看上去非常的完美,但是我们在线性代数中,还有一个非常重要的部分就是矩阵的运算,似乎除了初等变换以外,现在目前还对任何的求解线性方程没有帮助。现在我想要探讨一下矩阵的逆。以及逆矩阵的求法,看看它有什么用把!1 逆矩阵对于任何一个矩阵A来说,若存在一个矩阵B,使得:A∗B...
2019-09-27 13:56:10 21009
原创 线性代数04 行列式的性质:举一反三,从三个到十个
对于行列式的性质,一共十个,都可以从三个基础的性质推出来。因此此篇博文将详细的从三个基础性质说起。性质1 Det I=1说明:这个很好理解,只要知道单位矩的结构。就知道单位阵的对角线上全是1,因此行列式也是1.性质2对于行列式来说,变换行的位置,行列式需要变换符号:例如:性质3a矩阵的某一行可提取公因子到行列式外。这一点一定要区别于矩阵的提取公因子。...
2019-09-27 08:44:56 908
原创 线性代数03 齐次/非齐次线性方程组的解(行列式与解的关系)
上一篇文章介绍了关于矩阵的秩与线性方程组的解之间的关系。现在我们可以探究另一个非常重要的概念(行列式)与线性方程组的解的情况之间的关系。1 行列式首先,我们需要了解什么是行列式。行列式,是一个相对于矩阵的概念,并且必须是方阵才有行列式的概念。重要的话说三遍:方阵才有行列式的概念,方阵才有行列式的概念,方阵才有行列式的概念。我们可以认为行列式是一个值,通过对n阶方阵进行行列式的运算,可以...
2019-09-26 21:49:48 46149 4
原创 线性代数02 线性方程组的解的情况(矩阵的秩)
在01中,我们提到出了一个问题:关于线性方程组的解是否可以根据消元过程中的结构来探究?博主给出了答案是可以的,那么具体的情况是如何呢?我们先来明确几个概念:1 主元与矩阵的秩上一节01,我们提到了关于主元的概念,就是在阶梯矩阵中的非零行中,第一个不为零的数。那么很简单能够知道,主元的个数=非零行的数量。 如此一来。我们可以从主元出发,得到一个新的概念:矩阵的秩(Rank)=主元的数量=非...
2019-09-26 18:31:03 19761 2
原创 线性代数01 Gauss-Jordan(高斯-诺尔当)算法:消两个算什么?我一次消N个
0 概述虽然Gilbert Strang教授讲解线性代数是从向量在空间中的表示开始,但是我仍然想从解线性方程组来开始整个线性代数课程的笔记整理。 最重要的东西我一般都喜欢让它放在前面,虽然在大一的时候线代学的不咋地,但是对于线代有个非常重要的认识,整个的课本的核心都围绕线性方程组的求解来展开。当然后来也引入了其他的非常多的内容,但是还是非常基础而核心的内容。1 回顾方程组的消元解法高中或者...
2019-09-26 17:28:00 1821 2
原创 线性代数00 开篇
线性代数1 开篇00 学习动机与感悟最近因为想要重新复习数学基础的内容,看完了Gilbert Strang教授在麻省理工大学18.06的线性代数课程.大部分的内容都是大一的时候学过的,主要内容包括矩阵(各种矩阵),行列式,(也是我认为最常见,最基础的内容)以及一些拓展与应用的内容。上完课认为Gilbert Strang教学风格真的很好,线代本来是很抽象的东西,在大一刚入学的时候痴迷于代码的...
2019-09-26 16:58:31 305
原创 Kaggle之路(2)----监督学习经典模型----良/恶性肿瘤判定实例
2 经典模型学习—监督学习2.1 监督学习基本架构和流程文字说明:一般来说,分为以下步骤:(1)准备训练数据集(2)特征抽取(3)将数据集中抽取出来的特征与训练数据集中每一样本对应的目标/标记(可以认为是结果,或者需要预测、分类、判定的值)加入机器学习算法(4)得出预测模型(5)将测试集的数据通过同样的特征抽取方法进行特征抽取,并加入预测模型。得出预测记过,用一标准来衡量正确率。流...
2019-06-11 17:09:33 1247
原创 基于Python/PYQT5的动物识别专家系统(人工智能实验)
基于Python/PyQT5的动物识别专家系统(人工智能课程实验)本学期人工智能实验课要求完成一个动物识别专家系统。本文采用Python+PyQT5去完成GUI的设计和程序编写。一、系统主要逻辑:二、系统主要代码部分:四、完整代码请发邮件至 xiaotang_sama@163.com索取:...
2018-12-11 16:47:52 19498 31
原创 2018年APMCM亚太地区大学生数学建模竞赛 B题 Talents and Urban Development
2018年APMCM亚太地区大学生数学建模竞赛 B题Talents and Urban Development摘要部分:SummaryIn recent years, attracting talents to develop cities is one of the hot spots in many cities. In the process of talent demand, ma...
2018-11-30 17:16:01 14535 4
原创 win10环境下 JDK环境配置以及TOMCAT快速配置 一条龙
有很多小伙伴反映安装JDK的过程中不知道如何配置环境变量,查网上资料或者博客也有些出入,因此博主在这里介绍一下JDK以及TOMCAT的快速配置。整个过程大概10分钟,亲测按照步骤即可成功安装。
2018-10-30 11:42:40 322 1
原创 【数据结构】搜索中散列构造时冲突处理方法
一、冲突产生原因散列函数是一个压缩映象函数。关键码集合比散列表地址集合大得多。因此有可能经过散列函数的计算,把不同的关键码映射到同一个散列地址上,就会产生冲突。二、处理冲突的方法之一—闭散列法,也称开地址法1.线性探查法: (1)方法概述 先用除留余数法计算散列地址 hash(key) = key % p 若发现冲突,则使用增量 i 探查空的散列地址,直至无冲突出现为止。
2017-12-18 17:29:32 1267
原创 iooc-c++远征之封装下 对象成员示例代码
demo.cpp#include <iostream>#include <string>#include<stdlib.h>#include "Line.h"using namespace std;///2-5 对象成员///实例化时,会先实例化最底层的对象,销毁时则从外面int main(void){ Line *p = new Line(); delete p;
2017-09-15 09:36:54 323
原创 imooc-C++远征之封装篇(上)
! !#include <iostream>#include<string>#include<stdlib.h>using namespace std;///把实现细节隐藏起来,只暴露给用户关心的部分,就是封装///通过访问限定符实现封装 有 public(暴露部分) protected private(隐藏)三种///对象是具体的事物,而类是抽象出来的,出于不同的目的///类的定义
2017-09-14 10:27:56 312
2018年APMCM亚太地区大学生数学建模竞赛 B题 Talents and Urban Development
2018-11-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人