python elasticsearch_Python Elasticsearch API操作ES集群

环境

Centos 7.4

Python 2.7

Pip 2.7 MySQL-python 1.2.5 Elasticsearc 6.3.1

Elasitcsearch6.3.2

知识点

调用Python Elasticsearh API

Python Mysqldb使用

DSL查询与聚合

Python 列表操作

代码

#!/usr/bin/env python

# -*- coding: utf-8 -*-

#minyt 2018.9.1

#获取24小时内出现的模块次数

# 该程序通过elasticsearch python client 获取相关精简数据,可以计算请求数、超时数、错误数、正确率、错误率等等

import MySQLdb

from elasticsearch import Elasticsearch

from elasticsearch import helpers

#定义elasticsearch集群索引名

index_name = "logstash-nginxlog-*"

#实例化Elasticsearch类,并设置超时间为180秒,默认是10秒的,如果数据量很大,时间设置更长一些

es = Elasticsearch(['elasticsearch01','elasticsearch02','elasticsearch03'],timeout=180)

#DSL(领域特定语言)查询语法,查询top50 sname的排列次数

data_sname = {

"aggs": {

"2": {

"terms": {

"field": "apistatus.sname.keyword",

"size": 100,

"order": {

"_count": "desc"

}

}

}

},

"size": 0,

"_source": {

"excludes": []

},

"stored_fields": [

"*"

],

"script_fields": {},

"docvalue_fields": [

"@timestamp"

],

"query": {

"bool": {

"must": [

{

"match_all": {}

},

{

"range": {

"@timestamp": {

"gte" : "now-24h/h",

"lt" :  "now/h"

}

}

}

],

"filter": [],

"should": [],

"must_not": []

}

}

}

#按照DSL(特定领域语言)语法查询获取数据

def get_original_data():

try:

#根据上面条件搜索数据

res = es.search(

index=index_name,

size=0,

body=data_sname

)

return res

except:

print "get original data failure"

#初始化数据库

def init_mysql():

# 打开数据库连接

db = MySQLdb.connect("localhost", "myuser", "mypassword", "mydb", charset='utf8' )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# SQL 更新语句

sql = "update appname set count=0"

try:

# 执行SQL语句

cursor.execute(sql)

# 提交到数据库执行

db.commit()

except:

# 发生错误时回滚

db.rollback()

# 关闭数据库连接

db.close()

def updata_mysql(sname_count,sname_list):

# 打开数据库连接

db = MySQLdb.connect("localhost", "myuser", "mypassword", "mydb", charset='utf8' )

# 使用cursor()方法获取操作游标

cursor = db.cursor()

# SQL 更新语句

sql = "update appname set count=%d where sname = '%s'" % (sname_count,sname_list)

try:

# 执行SQL语句

cursor.execute(sql)

# 提交到数据库执行

db.commit()

except:

# 发生错误时回滚

db.rollback()

# 关闭数据库连接

db.close()

#根据Index数据结构通过Elasticsearch Python Client上传数据到新的Index

def import_process_data():

try:

#列表形式显示结果

res = get_original_data()

#print res

res_list = res.get('aggregations').get('2').get('buckets')

#print res_list

#初始化数据库

init_mysql()

#获取24小时内出现的SNAME

for value in res_list:

sname_list = value.get('key')

sname_count = value.get('doc_count')

print sname_list,sname_count

#更新sname_status值

updata_mysql(sname_count,sname_list)

except Exception, e:

print repr(e)

if __name__ == "__main__":

import_process_data()

总结

关键是DSL语法的编写涉及查询与聚合可以通过kibana的visualize或者devtool先测试出正确语法,然后结合python对列表、字典、除法、字符串等操作即可。下面汇总下各个算法:

总请求

http_host.keyword: api.mydomain.com

超长请求

http_host.keyword: api.mydomain.com AND request_time: [1 TO 600] NOT apistatus.status.keyword:*错误

错误请求

apistatus.status.keyword:*错误 AND (http_host.keyword: api.mydomain.com OR http_host.keyword: api.yourdomain.com )

请求健康度

域名与request_time聚合,域名请求时间小于3秒的次数除以总请求次数对应各个域名健康度

请求正确率

域名与http状态码聚合,域名http状态码为200的次数除以域名总请求数对应各个域名的请求正确率

©著作权归作者所有:来自51CTO博客作者三杯水的原创作品,如需转载,请注明出处,否则将追究法律责任

喜欢我的文章,成为我的天使投资人吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值