依照”清晰明了,内容充足”的标准,为大家挑选整理了 28 份速查表,内容涵盖机器学习、数据科学、概率论、SQL 以及大数据处理技术,相信对你一定有帮助。
今天带来的是数据科学中的 Python 应用速查表。
如果你刚开始学 Python,那么这份速查表就是你最好的参考。这里有具体的每一个步骤指引你学习 Python,另外还告诉你可供学习的资源、必须了解的 Python 库以及一些小建议。
这份 Datacamp 的速查表涵盖了数据科学中 Python 的所有基础操作,比如变量和数据类型、字符串操作、类型转换、列表以及常用的 Numpy 操作。如果你刚开始上手 Python,那就留着这份作为快速参考,这份速查表的特别之处是它列出了重要的 Python 库,而且案例都给出了实际代码。
NumPy 是 Python 里用于科学计算的一个重要的库。在这份同样来自 Datacamp 的速查表中,你会找到如何生成 Numpy 数组、进行数组的数学运算、数据切片等等。这份速查表的特别之处是它给每个功能函数归类了并且用简单的语言进行了解释。
这是你探索 NumPy、Pandas 和 Matplotlib 的非常好的资源,你可以学会如何在 Python 中导入文件、转换变量、整理数据、生成图像、处理缺失数据等。
Pandas 是 Python 中一个重要的库。 这份速查表会告诉你用 Pandas 进行数据处理的每一个步骤,有详细代码来举例如何读取/写入数据、预览 dataframe、合并数据等。
这是一份 DataCamp 提供的关于 Bokeh 的速查表,Bokeh 是Python 中的一个交互式可视化库,对大规模数据集尤其有用。这里有具体的步骤教你如何绘图、渲染、自定义数据可视化、生成统计图表等。
这是一份 scikit-learn 速查表,它提供用于数据预处理、回归分析、分类、聚类、降维、模型选择等操作的函数。它的特别之处是描绘了一个完整的机器学习流程。
文本数据的清洗是个繁琐的过程,掌握正确的操作技巧是最终得到理想的结果的关键。按照这份速查表来一步一步进行文本数据清洗,你会知道什么时候改去除停用词(Stop Words)、标点、表情符号等,每一种操作都有对应的代码和例子。