一、数据分析简介:
1、数据的预处理-考虑离群值以及缺失值,并对数据进行平滑处理以便确定可能的模型;
2、数据的汇总-计算基本的统计信息以描述数据的总体位置、规模及形状;
3、数据的可视化-绘制数据以确定模式和趋势;
4、建模-更加全面的描述数据的变化趋势,以便预测新数据值;
二、数据的预处理:
通过matlab正确区分有效数据的无效数据,为后续数据的分析打下基础,确保后续的数据分析得到有效的结果。
1、加载数据:
load
可以通过读取文件或者键入的方式加载数据。
2、缺失数据:
在matlab中使用NaN(非数字)值表示缺失数据;
函数isnan函数可以检查数据中是否有NaN值;
对于一个位置的数据当为NaN的时候isnan为0,当非NaN的时候isnan为1
A= count(:,:);
C = sum(isnan(A))
对于上述代码,可以检查在A中的数据是否有缺失项,