matlab nan变成0_Matlab中在数据分析的使用

本文介绍了在MATLAB中进行数据分析时的数据预处理步骤,包括检查和处理NaN值,识别并处理离群值,以及使用不同函数进行数据平滑。讨论了isnan函数用于检测缺失数据,以及如何通过平滑函数如smooth()、smooths()和medfit1()来过滤噪声并改善数据质量。
摘要由CSDN通过智能技术生成

d192045cd4529683e9a2805630b9b1be.png

一、数据分析简介:

1、数据的预处理-考虑离群值以及缺失值,并对数据进行平滑处理以便确定可能的模型;

2、数据的汇总-计算基本的统计信息以描述数据的总体位置、规模及形状;

3、数据的可视化-绘制数据以确定模式和趋势;

4、建模-更加全面的描述数据的变化趋势,以便预测新数据值;

二、数据的预处理:

通过matlab正确区分有效数据的无效数据,为后续数据的分析打下基础,确保后续的数据分析得到有效的结果。

1、加载数据:

load 

可以通过读取文件或者键入的方式加载数据。

2、缺失数据:

在matlab中使用NaN(非数字)值表示缺失数据;

函数isnan函数可以检查数据中是否有NaN值;

对于一个位置的数据当为NaN的时候isnan为0,当非NaN的时候isnan为1

A= count(:,:);
C = sum(isnan(A))

对于上述代码,可以检查在A中的数据是否有缺失项,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值