B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
2.所有结点存储一个关键字;
3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;
如:
B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;
否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入
右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树
的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构
(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
如:
但B树在经过多次插入与删除后,有可能导致不同的结构:
右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的
树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就
是所谓的“平衡”问题;
实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树
结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的
策略;
public class NodeTree {
int data; //根节点数据
NodeTree left; //左子树
NodeTree right; //右子树
public NodeTree() {
super();
}
public NodeTree(int data) { //实例化二叉树
super();
this.data = data;
left=null;
right=null;
}
public void insert(NodeTree root,int data){
if(data>root.data){ //如果插入的节点大于跟节点
if(root.right==null){//如果右子树为空,就插入,如果不为空就再创建一个节点
root.right=new NodeTree(data); //就把插入的节点放在右边
}else{
this.insert(root.right, data);
}
}else{ //如果插入的节点小于根节点
if(root.left==null){ //如果左子树为空,就插入,如果不为空就再创建一个节点
root.left=new NodeTree(data); //就把插入的节点放在左边边
}else{
this.insert(root.left, data);
}
}
}
}
public class NodeQuery {
public static void preOrder(NodeTree root) { // 先根遍历
if (root != null) {
System.out.print(root.data + "-");
preOrder(root.left);
preOrder(root.right);
}
}
public static void inOrder(NodeTree root) { // 中根遍历
if (root != null) {
inOrder(root.left);
System.out.print(root.data + "--");
inOrder(root.right);
}
}
public static void postOrder(NodeTree root) { // 后根遍历
if (root != null) {
postOrder(root.left);
postOrder(root.right);
System.out.print(root.data + "---");
}
}
public static void main(String[] args) {
int[] array = {35,17,39,9,28,65,56,87};
NodeTree root = new NodeTree(array[0]); //创建二叉树
for(int i=1;i
root.insert(root, array[i]); //向二叉树中插入数据
}
System.out.println("先根遍历:");
preOrder(root);
/* System.out.println();
System.out.println("中根遍历:");
inOrder(root);
System.out.println();
System.out.println("后根遍历:");
postOrder(root);*/
}
} 上面这个树的实现,应该是最经典最简单的了吧;