*非线性方程数值求解
*fzero单变量非线性方程求解
在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。该函数的调用格式为:
z=fzero('fname',x0,tol,trace)
其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。
例 求f(x)=x-10x+2=0在x0=0.5附近的根。
步骤如下:
(1) 建立函数文件funx.m。
function fx=funx(x)
fx=x-10.^x+2;
(2) 调用fzero函数求根。
z=fzero('funx',0.5)
z =
0.3758
**fsolve非线性方程组的求解
对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:
X=fsolve('fun',X0,option)
其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果。optimset(‘Display’,‘off’)将设定Display选项为‘off’。
例 求下列非线性方程组在(0.5,0.5) 附近的数值解。
(1) 建立函数文件myfun.m。
function q=myfun(p)
x=p(1);
y=p(2);
q(1)=x-0.6*sin(x)-0.3*cos(y);
q(2)=y-0.6*cos(x)+0.3*sin(y);
(2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。
x=fsolve('myfun',[0.5,0.5]',optimset('Display','off'))
x =
0.6354
0.3734
将求得的解代回原方程,可以检验结果是否正确,命令如下:
q=myfun(x)
q =
1.0e-009 *
0.2375 0.2957
可见得到了较高精度的结果。
自己的总结
solve()函数的输入是符号表达式(symbolic expression),必然要用到符号工具箱
fzero()和fsolve()函数的输入是函数句柄,除了利用编写function的m文件外,还可以利用构造隐函数的方法构造函数句柄(function handle),这样就不用再另外编写m文件,但是当碰到多解的问题时,我们无法让solve返回我们想要的值,solve只能返回一个解,而这个解是我们无法自定义的,而fsolve和fzero函数我们可以通过选择初始的迭代点来选择我们想要的解。
例如
利用solve函数
x=0:0.001:0.5;
y1=11.61*x-5.8;
y2=2*log(x)/log(10);
plot(x,y1,'*',x,y2,'P')
[x,y]=solve('y=11.61*x-5.8','y=2*log(x)/log(10)')
利用fzero函数解决该问题
f1 = @(x) 11.61*x-5.8;%表达式1
f2 = @(x) 2*log10(x);%表达式2
xs = (0:0.001:0.5).';
y1s = f1(xs);
y2s = f2(xs);
plot(xs,y1s,'*',xs,y2s,'P') %绘制函数图形
eqn = @(x) f1(x)-f2(x); %
result_x1 = fzero(eqn, 0.4)
result_y1 = f1(result_x1)
result_x2 = fzero(eqn, 1e-2)
result_y2 = f1(result_x2)