matlab计算方程fsolve,matlab中利用 solve,fzero,fsolve解方程问题

*非线性方程数值求解

*fzero单变量非线性方程求解

在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。该函数的调用格式为:

z=fzero('fname',x0,tol,trace)

其中fname是待求根的函数文件名,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。

例 求f(x)=x-10x+2=0在x0=0.5附近的根。

步骤如下:

(1) 建立函数文件funx.m。

function fx=funx(x)

fx=x-10.^x+2;

(2) 调用fzero函数求根。

z=fzero('funx',0.5)

z =

0.3758

**fsolve非线性方程组的求解

对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:

X=fsolve('fun',X0,option)

其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果。optimset(‘Display’,‘off’)将设定Display选项为‘off’。

例  求下列非线性方程组在(0.5,0.5) 附近的数值解。

(1) 建立函数文件myfun.m。

function q=myfun(p)

x=p(1);

y=p(2);

q(1)=x-0.6*sin(x)-0.3*cos(y);

q(2)=y-0.6*cos(x)+0.3*sin(y);

(2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。

x=fsolve('myfun',[0.5,0.5]',optimset('Display','off'))

x =

0.6354

0.3734

将求得的解代回原方程,可以检验结果是否正确,命令如下:

q=myfun(x)

q =

1.0e-009 *

0.2375 0.2957

可见得到了较高精度的结果。

自己的总结

solve()函数的输入是符号表达式(symbolic expression),必然要用到符号工具箱

fzero()和fsolve()函数的输入是函数句柄,除了利用编写function的m文件外,还可以利用构造隐函数的方法构造函数句柄(function handle),这样就不用再另外编写m文件,但是当碰到多解的问题时,我们无法让solve返回我们想要的值,solve只能返回一个解,而这个解是我们无法自定义的,而fsolve和fzero函数我们可以通过选择初始的迭代点来选择我们想要的解。

例如

利用solve函数

x=0:0.001:0.5;

y1=11.61*x-5.8;

y2=2*log(x)/log(10);

plot(x,y1,'*',x,y2,'P')

[x,y]=solve('y=11.61*x-5.8','y=2*log(x)/log(10)')

利用fzero函数解决该问题

131866877_1_20180503104307519.gif

f1 = @(x) 11.61*x-5.8;%表达式1

f2 = @(x) 2*log10(x);%表达式2

xs = (0:0.001:0.5).';

y1s = f1(xs);

y2s = f2(xs);

plot(xs,y1s,'*',xs,y2s,'P') %绘制函数图形

eqn = @(x) f1(x)-f2(x); %

result_x1 = fzero(eqn, 0.4)

result_y1 = f1(result_x1)

result_x2 = fzero(eqn, 1e-2)

result_y2 = f1(result_x2)

131866877_1_20180503104307519.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值