python 高斯过程_python – 高斯过程scikit-learn – 异常

x : [[ 136. 137. 137. 132. 130. 130. 132. 133. 134.

135.

135. 134. 134. 1139. 1019. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

70. 24. 55. 0. 9. 0. 0.] [ 136. 137. 137. 132. 130. 130. 132. 133. 134. 135.

135. 134. 134. 1139. 1019. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

70. 24. 55. 0. 9. 0. 0.] [ 82. 76. 80. 103. 135. 155. 159. 156. 145. 138.

130. 122. 122. 689. 569. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.] [ 156. 145. 138. 130. 122. 118. 113. 111. 105. 101.

98. 95. 95. 759. 639. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.] [ 112. 111. 111. 114. 114. 113. 114. 114. 112. 111.

109. 109. 109. 1109. 989. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.] [ 133. 130. 125. 124. 124. 123. 103. 87. 96. 121.

122. 123. 123. 399. 279. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.] [ 104. 109. 111. 106. 91. 86. 117. 123. 123. 120.

121. 115. 115. 549. 429. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.] [ 144. 138. 126. 122. 119. 118. 116. 114. 107. 105.

106. 119. 119. 479. 359. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0.]]

y : [[ 7. 9. 13. 30. 34. 37.

36. 41. ] [ 7. 9. 13. 30. 34. 37.

36. 41. ] [ -4. -9. -17. -21. -27. -28. -28. -20. ] [ -1. -1. -4. -5. 20. 28.

31. 23. ] [ -1. -2. -3. -1. -4. -7.

8. 58. ] [ -1. -2. -14.33333333 -14. -13.66666667 -32. -26.66666667 -1. ] [ 1. 3.33333333 0. -0.66666667 3. 6.

22. 54. ] [ -2. -8. -11. -17. -17. -16. -16. -23. ]]

————————————————————————— Exception Traceback (most recent call

last) in ()

11 gp = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1)

12

—> 13 gp.fit(x__, y__)

/usr/local/lib/python2.7/site-packages/sklearn/gaussian_process/gaussian_process.pyc

in fit(self, X, y)

300 if (np.min(np.sum(D, axis=1)) == 0.

301 and self.corr != correlation.pure_nugget):

–> 302 raise Exception(“Multiple input features cannot have the same”

303 ” target value.”)

304

Exception: Multiple input features cannot have the same target value.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值