机器学习(八):AnomalyDetection异常检测_Python

七、异常检测 Anomaly Detection

1、高斯分布(正态分布)Gaussian distribution

  • 分布函数:$$p(x) = {1 \over {\sqrt {2\pi } \sigma }}{e^{ - {​{​{​{(x - u)}^2}} \over {2{\sigma ^2}}}}}$$
    • 其中,u为数据的均值σ为数据的标准差
    • σ,对应的图像越
  • 参数估计(parameter estimation
    • $$u = {1 \over m}\sum\limits_{i = 1}^m {​{x^{(i)}}} $$
    • $${\sigma ^2} = {1 \over m}\sum\limits_{i = 1}^m {​{​{({x^{(i)}} - u)}^2}} $$

2、异常检测算法

  • 例子
    • 训练集:$$\{ {x^{(1)}},{x^{(2)}}, \cdots {x^{(m)}}\} $$,其中$$x \in {R^n}$$
    • 假设$${x_1},{x_2} \cdots {x_n}$$相互独立,建立model模型:
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值