lm曲线公式推导_圆锥曲线一些结论的推导

文章旨在提供椭圆、双曲线及抛物线相关结论的最快推导方式,过程简略。涉及第三定义、半径和弦长、极点极线等内容,如焦半径公式、焦点三角形面积公式等,还给出了切线、割线方程的推导,以及一些例题和引申结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如你所见,这篇文章的目的并不是收集结论。我向来认为记结论比记方法难,况且在考场上决定大题书写速度的除了结论的运用外还有结论的推导。

这篇文章力求最快的推导方式,因此所有的过程都会很简略。

由于椭圆的推导过程和双曲线的推导过程是一致的,因此我不会将结论推两遍。

结论在两个坐标轴上都成立我也不会演示两遍。

另外,以下绝大部分命题的逆命题是成立的,还有很多命题等价,可以自行考虑证明。


第三定义

第三定义大家已经很熟悉了。

椭圆

上三点
满足

需要注意的是一些变形:

例题:

的左顶点为
轴于
证明以
为直径的圆过定点。

由第三定义可知

也就是
圆的方程不难表示。

除此之外,还有一些类似于第三定义的结论:

1.

的右顶点和上顶点为
是椭圆上一点,
轴于
轴于

2.

上一点
与椭圆上关于
轴对称的点
连线在
轴上的截距乘积为
轴的结论则是
轴截距乘积为

这两个结论直接设

坐标并求出截距即可,其中2是极点极线的直接推论。

3.

左顶点为
过定点
的不平行与坐标轴的弦交椭圆于

推导用齐次化联立即可,请参考everlasting:仿射与参数方程的联系例2。


半径和弦长

焦半径

是椭圆
上一点,
是椭圆的左右焦点,

以下

指焦准距,

1.焦半径公式:

将双曲线和椭圆统一以后就是

这实际上是以左焦点为极点建立的极坐标系里的圆锥曲线的方程

焦点弦的弦长即

2.焦点三角形面积:

双曲线中

半径

椭圆或双曲线的半径是一个相对易于表示的量,但使用极坐标方程能让计算更简单:

椭圆的半径主要用于内准圆的推导:

上的点,且
上的投影的轨迹方程。

利用极坐标方程:

并设
的极角为

中,设
上的投影为

能遍历所有极角,因此
的轨迹方程是

另外,使用极角计算

等的值比斜率表示快一些,并且不必分类。

过曲线上一定点的弦长问题

这里仅以左顶点为例,实际上这个方法还可以推广。

的左顶点为极点建立极坐标系:

例题:

(1)椭圆上距短轴顶点最远的点是另一短轴顶点,求离心率的取值范围。

不妨设椭圆方程为

转化为极坐标方程即

显然

恒成立,即
恒成立。

因此

(2)

上关于原点对称的两点,
的左顶点为
分别交圆
与另外一点
求证
为定值。

为极点,
轴为极轴建立极坐标系,则有

的极角为

同理有


极点极线

椭圆的切线方程建议使用参数方程推:

根据椭圆的参数方程

是椭圆的切线,则有
有且仅有一解,

由辅助角公式可知这等价于

这也暗示我们传统联立法中的

存在因式

这里注意,只要把

替换为
就可以得到双曲线的以下所有对应结论,切线的推导过程中只要将参数方程改为

1.证明椭圆在椭圆上点

的切线是

显然椭圆的参数方程与直线联立后仅有一解

因此该直线与椭圆切于

2.证明椭圆外一点

的切点弦所在直线的方程是

设切点之一为

则切线方程

由切线过

因此
上,

两个切点都满足这个方程。由两点确定一条直线知切点弦方程即

例题:证明过

上一点作
的两条切线,切点弦必过定点。

对应的切点弦所在直线为

可知切点弦过定点

这条结论的引申结论如:

(1)若

在准线上,则切点弦过
与该弦垂直。

3.证明过椭圆内一点

的弦的两个端点的切线交点必在
上:

设切点为

切线交点为

考虑到

在弦上,令

因此

也可以将3看为2的推论,直线上一点

对应的切点弦是

在该切点弦上,因此每个直线上的点
与一条切点弦对应,唯一的例外是过椭圆中心的切点弦,此时两端点切线平行,无交点。

4.蒙日圆:设

的两条互相垂直的切线相交于
的轨迹方程。

当有某条切线斜率不存在时,

否则设

切线方程

联立椭圆的参数方程

利用辅助角公式可知

也就是

显然

因此

的轨迹方程是

这个结论可以由垂直推广至夹角为一定值。

5.光学性质:

椭圆上一点

的切线是
的外角平分线,双曲线中则是角平分线。

这是非常容易证明的性质,注意到

是切线上满足
最小的点,构造
关于切线的对称点
,则
三点共线。

如果取

在切线上的投影
,易知

我们就得到了一个命题:

的焦点在曲线上一点切线的投影的轨迹是
该命题对双曲线也成立。

6.由割线定义的极点极线是切线形式的一般化,似乎没有可以用考纲内做法轻松推导的方法,这可能会呈现在我专门写极点极线的文章里。这里只给出特殊情况:

(1)过椭圆内一点

作弦
,则使
恒成立的定点是

实际上这是两条割线恰与坐标轴对称的情况。

垂直
轴可知
轴上,转化成斜率和为零即可。

抛物线的

满足的条件是在对称轴上,并关于对称轴与抛物线的交点对称。

如果

是准线与对称轴交点,可以使用焦半径公式和相似证明。

(2)椭圆的左右顶点是

,过椭圆内一点
作弦
交点的轨迹是

利用

和横坐标关系转化成
为定值即可。

抛物线的性质

为抛物线
上一点。

1.抛物线的焦半径公式

是抛物线的焦点弦,则

的中点为
,中垂线交
轴于
,则

椭圆双曲线中有类似的结论

只是抛物线中的运用较多。

例题:

的焦点弦,
在准线上的投影与焦点连线交抛物线于
两点,求四边形
面积的最小值。

2.抛物线的切线、割线方程:

则割线方程:

整理得

注意抛物线的割线方程完全没有必要写成斜截式,这种形式才是最简便的。

重合时上式即表示切线方程,整理即

如果你担心这种逻辑会被扣分,那就用求导法推导:

看成
的函数来求导。

抛物线的极点极线就不推了,本身计算过程并不难,不需要像椭圆、双曲线那样规避计算过程。如果参考上面椭圆的推导方式,可以省去一定的计算量,但需要较多的文字说明,选择哪种看个人喜好。

平面内一点

的极线即
相应性质参考椭圆。

3.直角梯形里的几何性质:

4d9a99e5e369730a63972e003f44aaaf.png

其他的点是垂足、中点等。

显然

代入

可知
这可以推
的值。

由于坐标全部可以写出来,所以以下直角、共线用向量推就可以了。

三点共线。

平分

三条线交于
中点。

这里

的切点弦。

4.切点弦的几何性质:

的切点弦是
在准线上的投影,则有:

中点是
与抛物线对称轴平行,且
的中点在抛物线上。

垂直平分
这是抛物线的光学性质,用切线的斜率和
易推。

关于
对称 ,因此

同理有

正负取决于

在准线的哪一侧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值