如你所见,这篇文章的目的并不是收集结论。我向来认为记结论比记方法难,况且在考场上决定大题书写速度的除了结论的运用外还有结论的推导。
这篇文章力求最快的推导方式,因此所有的过程都会很简略。
由于椭圆的推导过程和双曲线的推导过程是一致的,因此我不会将结论推两遍。
结论在两个坐标轴上都成立我也不会演示两遍。
另外,以下绝大部分命题的逆命题是成立的,还有很多命题等价,可以自行考虑证明。
第三定义
第三定义大家已经很熟悉了。
椭圆
需要注意的是一些变形:
例题:
由第三定义可知
除此之外,还有一些类似于第三定义的结论:
1.
2.
这两个结论直接设
3.
推导用齐次化联立即可,请参考everlasting:仿射与参数方程的联系例2。
半径和弦长
焦半径
设
以下
1.焦半径公式:
将双曲线和椭圆统一以后就是
这实际上是以左焦点为极点建立的极坐标系里的圆锥曲线的方程
焦点弦的弦长即
2.焦点三角形面积:
双曲线中
半径
椭圆或双曲线的半径是一个相对易于表示的量,但使用极坐标方程能让计算更简单:
椭圆的半径主要用于内准圆的推导:
利用极坐标方程:
则
在
另外,使用极角计算
过曲线上一定点的弦长问题
这里仅以左顶点为例,实际上这个方法还可以推广。
以
例题:
(1)椭圆上距短轴顶点最远的点是另一短轴顶点,求离心率的取值范围。
不妨设椭圆方程为
转化为极坐标方程即
显然
因此
(2)
设
以
圆
设
同理有
极点极线
椭圆的切线方程建议使用参数方程推:
根据椭圆的参数方程
若
由辅助角公式可知这等价于
这也暗示我们传统联立法中的
这里注意,只要把
1.证明椭圆在椭圆上点
显然椭圆的参数方程与直线联立后仅有一解
2.证明椭圆外一点
设切点之一为
由切线过
两个切点都满足这个方程。由两点确定一条直线知切点弦方程即
例题:证明过
即
这条结论的引申结论如:
(1)若
3.证明过椭圆内一点
设切点为
则
考虑到
因此
也可以将3看为2的推论,直线上一点
且
4.蒙日圆:设
当有某条切线斜率不存在时,
否则设
联立椭圆的参数方程
则
利用辅助角公式可知
也就是
显然
因此
这个结论可以由垂直推广至夹角为一定值。
5.光学性质:
椭圆上一点
这是非常容易证明的性质,注意到
如果取
我们就得到了一个命题:
6.由割线定义的极点极线是切线形式的一般化,似乎没有可以用考纲内做法轻松推导的方法,这可能会呈现在我专门写极点极线的文章里。这里只给出特殊情况:
(1)过椭圆内一点
实际上这是两条割线恰与坐标轴对称的情况。
取
抛物线的
如果
(2)椭圆的左右顶点是
利用
抛物线的性质
设
1.抛物线的焦半径公式
若
若
椭圆双曲线中有类似的结论
例题:
2.抛物线的切线、割线方程:
设
整理得
注意抛物线的割线方程完全没有必要写成斜截式,这种形式才是最简便的。
当
如果你担心这种逻辑会被扣分,那就用求导法推导:
抛物线的极点极线就不推了,本身计算过程并不难,不需要像椭圆、双曲线那样规避计算过程。如果参考上面椭圆的推导方式,可以省去一定的计算量,但需要较多的文字说明,选择哪种看个人喜好。
平面内一点
3.直角梯形里的几何性质:

设
显然
代入
由于坐标全部可以写出来,所以以下直角、共线用向量推就可以了。
这里
4.切点弦的几何性质:
若
若
则
同理有
正负取决于