深度学习数字仪表盘识别_基于深度学习的行人重识别研究进展

行人重识别(ReID)是一项利用计算机视觉技术寻找特定行人的技术,适用于刑事侦查、智慧超市和多目标跟踪等领域。随着深度学习的发展,ReID方法已取得显著进步,包括基于表征学习、度量学习、局部特征、视频序列和GAN的策略。尽管在某些数据集上精度接近95%,但面临真实环境、半监督学习、特征表示和网络可解释性等挑战,未来研究将关注这些问题。
摘要由CSDN通过智能技术生成

行人重识别也称行人再识别(本文简称ReID),是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术,被广泛认为是一个图像检索的子问题,其目标是给定一个监控行人图像,检索跨设备下的该行人图像。行人重识别技术在刑事侦查、智慧超市和多目标跟踪等领域都有广泛的应用。

在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的技术。ReID有一个非常重要的特性就是跨摄像头,而不同的摄像头拍摄的行人图像可能有较大的姿态、背景、视角、分辨率、光照以及尺度等变化。

9f65d98b7c0962e4c98752d0107a1f93.png

图1 行人重识别难点示例

行人重识别系统包括行人检测和行人重识别,目前行人重识别被当做一个单独的课题研究。传统的方法依赖手工设计的特征,不能适应数据量很大的复杂环境。近年来随着深度学习的发展,大量基于深度学习的行人重识别方法被提出。基于深度学习的行人重识别技术大致可以分为以下几类:

1)基于表征学习的ReID方法;

2)基于度量学习的ReID方法;

3)基于局部特征的ReID方法;

4)基于视频序列的ReID方法;

5)基于GAN的ReID方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值