试卷评讲课堂实录
删繁就简,躲避开计算
--郑州二质检理科数学几个快捷“秒杀”
刚考完的郑州二质检数学理科试卷,抛开出题有瑕疵的试题,那么,在考试中,想提高做题速度,则需要同学们通过一轮积累的一些知识和技巧,再加上“特殊值”大法,可以绕开一些不必要的计算量。
二轮考试前后,可以开始积累一些快速技巧了。今天,一起研究一下这次考试中的那些试题可以找到快速技巧,借此来提高做题速度。
本文解法,都是田老师试卷评讲课时与学生的课堂互动探讨,也包括脸红脖子粗的争吵,还包括一些开启群嘲模式,更有“哇,原来还可以这样”的惊叹,甚至还有让老师挠头继而赞不绝口的胡思乱想。
总而言之,要把重要试卷的每一道题都要说一下,才是大考之后的试卷评讲课。
以下是一部分的课堂互动札记:
A有 B没有!
本题算不上节省计算量,不过,如果对于对数定义域和指数值域非常熟悉的话,知道指数值域大于零,补集必含零,0也是A的对数定义域,所以答案是D。
类似这样的求集合的,特别是含有复杂的含有不等式运算的试题,都可以借此来代入“秒杀”。拿着四十五套金考卷,只看第一二位置的这类小题,很快就把这个位置的题练完。
这道题,通过基础变换后得到函数2sin(1/2 x+30*), 注意到周期是4。都可以代特制排除。
A:代人可排除。
B:知x=-30*,函数值必须是0,可排除。
C: X=/3,函数值也必须是0,可排除。
如果一轮讲的“快速画图法”运用的好,直接看出D答案正确。
当然,对称中心等知识熟练,也可以直接做出来。
牢记“快速做图法”是解决三角函数小题的不二法宝。为此,晚上辅导课时候还抽查,甚至一个一个排查,要求每个人必须会快速画图。
最特殊的就是2017年这道理科题,通过“起点画图”,基本上一两分钟就通过出图秒杀,箴言一句海清河晏嘛,根本不需要神马诱导公式化简的等等。
线性规划题,注意到不等式组和z的式子,都是对应的线型,所以直接解出交点代入即可。当然,这个题,也有很多不安定因素,最令人不安的就是,约束条件是否是封闭多边形,否则就容易出错。此类题反复强调,不建议用解交点值代入法做,尽量观察完图像再确定。
上边几题,应为都是比较容易的,下边从第七题开始,就逐渐有了“狂飙猛进”的做题速度、
实际上求最值,可以排除答案BC,不过,依然难以区分。有垂直,有长度,再不建系,天理不容嘛。P点显然在直线x+y=2上,设点写出坐标即可。如果基底与数量积的推导能力稍微差的同学,就没必要用基底推导了。
建系,设点,化为解析,是解决向量一些超麻烦试题的重要法宝之一。要牢牢记住“与形状局部或者完全无关”这个向量的拓扑学性质。当然,这个方法也偶尔会带来解析几何繁复的计算,心里要有数。
这道题,正规方法用的是分离常数,再值域即可,这个方法也不算特别难。此处的快捷解法,源于第一轮复习,对于这个函数的认识和积累:
1、对称中心必在y轴上
2、那么对称中心在哪条轴上呢?
有以上一轮积累可知,,现在可以排上用场了。首先有高斯函数定义,把答案A,B排除。再把x=-1代入,得到y=7/4,且极限判断法知y>1/2,右对称性知道最大值域小于3.所以排除含有3的D答案。
当然,第一轮如果没有这个研究性积累的话,上边的判断犹如天书般费解,那还是老老实实的分离常数求值域吧。
要注意,指对函数,如果式子复杂,但是里边可能蕴含着“对称轴和对称中心”这个特殊的意外之财!
这类函数,还要求学生在课余,自己用田老师发的手机软件反复画图变化,加强印象。
这道题,是有问题的试题之一,具体详细解法,可参考如下。
虽然有问题,但是咱们依然可以说它的快捷解法。
注意到F2P/F1P=2a/C,显然这俩焦半径兄弟不会相等,必有大小关系,所以,令2a/C=1,得e=2,显然有对称性,必有在e=2左右两侧的值,这个答案在(1,2)子区间和(2,某个值)之内。
不过是错题,所以等它修改后再秒杀吧。
但是,本题第一个答案,确实有点太过分了,双曲线离心率不仅仅小于1,竟然还有负的,这,就有点太侮辱智商了吧。
本题,如果说P点在右支上,那就不用问,把所有离心率小于2的,通通咔嚓咔嚓掉。
圆锥曲线,做题要注意它的对称性,在离心率中起到了关于某个数的“对称”特性。
这个只是一种经验,不能当做必要条件,否则死的很快。所以,好的出题老师,一般会把答案反复斟酌,消除这种明显的“特性”。
这道题,显示逻辑分析的重要性。这个折叠图形,是源于中招试题的一个思维。根据题意,如果取极限位置,p点投影为M,则必有X
=BM
当时,问孩子们,怎么能保证折叠一定在咱们这个讨论氛围之内,而不会更小?
有学生当时就不屑的把演草纸拿来开始折叠展示给我,吓得我赶紧承认这问题太幼稚了。
所以这个才是爽快淋漓的分析法,完全把繁琐的图像计算绕开了。
此题若果想要节省计算,需要补充抛物线焦点弦中点弦的一些二级甚至三级结论,如下图是本题用到的结论,所以没有那种快速计算的“惊艳”感觉。
填空题,没有可供琢磨的选项,并且要求答案的完备性,所以,一般很难有快算结果,只有所谓快速思维罢了。如这一题
如快速思维,也就是平常做题的常规思路:如果角复杂,要寻找拆角技巧。把试题中的角加加,减减,乘乘,除除,等等乱七八糟的构造寻觅。
当然,本题“打撒了”再观察,也未尝不可。总而言之,这道题,出题老师终于手边放着《金刚经》来出题了,说明有了佛家慈悲之怀!
由分离参数,可得
出图像,把x2/X1比值取等号,可得a的上界值。作为填空题,可以直接用极限法得到下界为a=0。后续计算,就是常规的解方程了。不在赘述。
这一道题,实际上是一道21题位置的导数第二问大题改编的小题,具体小题大做的分析过程,可以参考这个视屏:
2019郑州二质检16题的一种解法:换元构造法
大题,因为需要有过程,所以很难有可以省略的计算过程。不过,选做这道题的同学,一定要牢牢记住一轮复习时候,关于这个函数的总结:
这个图像最大的特征,是“开口向上”,则最小值必在“拐点处”,这样,心里就明镜似的,剩下只是书写过程而已。
二质检以后,做题,就要开始“上帝视角”了,要跳出试题,远远的观察一下,是否有可供狂奔的蛛丝马迹。当然,平时有秒杀试题,做完,还得回过头来,搞清楚它的来龙去脉,积累知识。
是谓“跳出三界外,还在五行中!”
二轮以后,开始进入上帝视角琢磨研判试题了!