python 中文分词_python中文分词

本文介绍了中文分词的基本概念,从最大匹配方法到基于统计学的分词策略,重点讲解了使用动态规划解决中文词语概率最大化的实例,并提到了log相加优化方法的应用。通过搜狗词库,展示了如何利用Python实现高效的分词算法。
摘要由CSDN通过智能技术生成

相对于英文而言,中文在计算机处理方面有个必须要面对的问题就是中文分词,英文的单词都是空格间隔的,而中文的词语则不同,所以用程序解决中文分词,在很多自然语言处理方面都是首要进行的步骤。

其中最简单的就是最大匹配的中文分词了,比如“今天天气不错”可以分词为“今天/天气/不错”,但是面对一些有歧义的句子时却显得捉襟见肘,于是“南京市长江大桥”就会被分成“南京市长/江/大桥”而不是“南京市/长江/大桥”,于是更好的是基于统计学原理的分词,也就是说看哪种出现的频率更高。

对于一个中文字符串“a1a2a3...an”如何正确的用词语c1,c2..cm表示就是中文分词的任务,也就是说我们要去找寻P(c1c2..cm)最大的分词,按照马尔科夫链的想法就是说我们就是求P(c1)*P(c1|c2)*P(c1c2|c3)*...P(c1c2...cm-1|cm)最大。按照阿卡姆剃刀的想法我们可以假设一个最可能的实现,于是google黑板报的假设就是每个词只跟前面的词有关,于是变为求P(c1)*P(c1|c2)*P(c2|c3)*...P(cm-1|cm)最大。进一步的其实我们可以假设每个词都是相对独立的,也就是求P(c1)*P(c2)*...P(cm)最大,那么这个怎么求呢,就是用dp的方法。ok,上代码。

# -*- coding: UTF-8 -*-

import collections

d=collections.defaultdict(lambda:1)

def init(filename='SogouLabDic.dic'):

f=open(filename,'r')

total=0

while True:

line=f.readline()

if not line: break

word, freq = line.split('\t')[0:2]

total+=int(freq)+1#smooth

try:

d[word.decode('gbk')]=int(freq)+1

except:

d[word]=int(freq)+1

f.close()

d['_t_']=total

def solve(s):

l=len(s)

p=[0 for i in range(l+1)]

p[l]=1

div=[1 for i in range(l+1)]

t=[1 for i in range(l)]

for i in range(l-1,-1,-1):

for k in range(1,l-i+1):

tmp=d[s[i:i+k]]

if k>1 and tmp==1:

continue

if(d[s[i:i+k]]*p[i+k]*div[i] > p[i]*d['_t_']*div[i+k]):

p[i]=d[s[i:i+k]]*p[i+k]

div[i]=d['_t_']*div[i+k]

t[i]=k

i=0

while i

print s[i:i+t[i]],

i=i+t[i]

if __name__ == '__main__':

init()

s="其中最简单的就是最大匹配的中文分词"

s=s.decode('utf8')

solve(s)

词库用到了搜狗实验室提供的不错的词库,程序还是很清晰的,值得注意的就是乘法不要直接去乘因为频率都是小于1的,乘的太多可能就会变为0就要影响整个算法了,所以我是分子分母分开存放的,话说直接用了python的原生大整数,连gcd都懒得写了啊。。。

ps:注意到如果词在字典里没有出现会导致概率乘积是0的情况,所以需要进行smooth

------------我是分割线--------------------

理论上用log相加的方法是最好的,于是修改了下代码,变得更简短了,只要34行哎,代码在github上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值