通常,当您读入这样的值时,它们是以规则模式(例如,一个类C结构的数组)。在
另一个常见的情况是各种值的短头,后面跟着一堆同质类型的数据。在
我们先处理第一个案子吧。在
读取数据类型的规则模式
例如,您可能有以下内容:float, float, int, int, bool, float, float, int, int, bool, ...
如果是这样,您可以定义一个数据类型来匹配类型的模式。在上述情况下,它可能看起来像:
^{pr2}$
(注意:有许多不同的方法来定义数据类型。例如,您也可以将其写成np.dtype('f8,f8,i8,i8,?')。有关详细信息,请参阅^{}的文档。)
当您读入数组时,它将是一个带有命名字段的结构化数组。如果您愿意的话,可以稍后将其拆分为单独的数组。(例如series1 = data['a']和上面定义的数据类型)
这样做的主要优点是从磁盘读取数据的速度非常快。Numpy将简单地将所有内容读入内存,然后根据您指定的模式解释内存缓冲区。在
缺点是结构化数组的行为与常规数组稍有不同。如果你不习惯它们,一开始它们可能看起来很混乱。要记住的关键部分是数组中的每个项都是您指定的模式之一。例如,对于我上面展示的,data[0]可能是(4.3, -1.2298, 200, 456, False)之类的东西。在
在标题中读取
另一个常见的情况是,您有一个已知格式的头,然后是一系列常规数据。您仍然可以使用np.fromfile来实现这一点,但是您需要分别解析头。在
首先,读标题。您可以用几种不同的方法来实现这一点(例如,除了np.fromfile之外,还可以看看struct模块,尽管这两种方法都可能对您的目的起到很好的作用)。在
之后,当您将file对象传递给fromfile时,文件的内部位置(即f.seek控制的位置)将位于头的末尾和数据的开头。如果文件的其余部分都是同一类型的数组,则只需调用np.fromfile(f, dtype)。在
作为一个简单的例子,您可能有如下内容:import numpy as np
# Let's say we have a file with a 512 byte header, the
# first 16 bytes of which are the width and height
# stored as big-endian 64-bit integers. The rest of the
# "main" data array is stored as little-endian 32-bit floats
with open('data.dat', 'r') as f:
width, height = np.fromfile(f, dtype='>i8', count=2)
# Seek to the end of the header and ignore the rest of it
f.seek(512)
data = np.fromfile(f, dtype=np.float32)
# Presumably we'd want to reshape the data into a 2D array:
data = data.reshape((height, width))