xxljob 配置具体定时任务_一篇文章搞定Celery消息队列配置定时任务

介绍

celery 定时器是一个调度器(scheduler);它会定时地开启(kicks off)任务,然后由集群中可用的工人(worker)来执行。

定时任务记录(entries)默认 从 beat_schedule 设置中获取,但自定义存储也可以使用,如把记录存储到SQL数据库中。

要确保同一时间一份时间表上只有一个调度器在运行,否则会因为重复发送任务而结束。使用集中途径意味着定时任务不用必须同步,并且服务无需用锁操控。

ebfdf63901fef1096b537c3891a054d8.png
user:用户程序,用于告知celery去执行一个任务。broker: 存放任务(依赖RabbitMQ或Redis,进行存储)worker:执行任务

celery需要rabbitMQ、Redis、Amazon SQS、Zookeeper(测试中) 充当broker来进行消息的接收,并且也支持多个broker和worker来实现高可用和分布式。http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html

版本和要求

Celery version 4.0 runs on        Python ❨2.7, 3.4, 3.5❩        PyPy ❨5.4, 5.5❩    This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required.    If you’re running an older version of Python, you need to be running an older version of Celery:        Python 2.6: Celery series 3.1 or earlier.        Python 2.5: Celery series 3.0 or earlier.        Python 2.4 was Celery series 2.2 or earlier.    Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.

环境准备

安装rabbitMQ或Redis

安装celery

pip3 install celery

快速上手

s1.py

s1.pyimport timefrom celery import Celeryapp = Celery('tasks', broker='redis://192.168.10.48:6379', backend='redis://192.168.10.48:6379')@app.taskdef xxxxxx(x, y):    time.sleep(10)    return x + y

s2.py

from s1 import func# func,并传入两个参数result = xxxxxx.delay(4, 4)print(result.id)

s3.py

from celery.result import AsyncResultfrom s1 import appasync = AsyncResult(id="f0b41e83-99cf-469f-9eff-74c8dd600002", app=app)if async.successful():    result = async.get()    print(result)    # result.forget() # 将结果删除elif async.failed():    print('执行失败')elif async.status == 'PENDING':    print('任务等待中被执行')elif async.status == 'RETRY':    print('任务异常后正在重试')elif async.status == 'STARTED':    print('任务已经开始被执行')
# 执行 s1.py 创建worker(终端执行命令):celery worker -A s1 -l info# PS:Windows系统上执行命令时出错解决方法    pip3 install eventlet# 后期运行修改为:    celery worker -A s1 -l info -P eventlet# 执行 s2.py ,创建一个任务并获取任务ID:    python3 s2.py# 执行 s3.py ,检查任务状态并获取结果:    python3 s3.py

多任务结构

pro_cel    ├── celery_tasks# celery相关文件夹    │   ├── celery.py   # celery连接和配置相关文件    │   └── tasks.py    #  所有任务函数    ├── check_result.py # 检查结果    └── send_task.py    # 触发任务

pro_cel/celery_tasks/celery

#!/usr/bin/env python# -*- coding:utf-8 -*-from celery import Celerycelery = Celery('func',                broker='redis://192.168.111.111:6379',                backend='redis://192.168.111.111:6379',                include=['celery_tasks.tasks'])# 时区celery.conf.timezone = 'Asia/Shanghai'# 是否使用UTCcelery.conf.enable_utc = False

pro_cel/celery_tasks/tasks.py

#!/usr/bin/env python# -*- coding:utf-8 -*-import timefrom .celery import celery@celery.taskdef func(*args, **kwargs):    time.sleep(5)    return "任务结果"@celery.taskdef hhhhhh(*args, **kwargs):    time.sleep(5)    return "任务结果"

pro_cel/check_result.py

#!/usr/bin/env python# -*- coding:utf-8 -*-from celery.result import AsyncResultfrom celery_tasks.celery import celeryasync = AsyncResult(id="ed88fa52-11ea-4873-b883-b6e0f00f3ef3", app=celery)if async.successful():    result = async.get()    print(result)    # result.forget() # 将结果删除elif async.failed():    print('执行失败')elif async.status == 'PENDING':    print('任务等待中被执行')elif async.status == 'RETRY':    print('任务异常后正在重试')elif async.status == 'STARTED':    print('任务已经开始被执行')

pro_cel/send_task.py

#!/usr/bin/env python# -*- coding:utf-8 -*-import celery_tasks.tasks# 立即告知celery去执行func任务,并传入两个参数result = celery_tasks.tasks.func.delay(4, 4)print(result.id)

更多配置:http://docs.celeryproject.org/en/latest/userguide/configuration.html

定时任务

设定时间让celery执行一个任务

import datetimefrom celery_tasks.tasks import func"""from datetime import datetime v1 = datetime(2020, 4, 11, 3, 0, 0)print(v1) v2 = datetime.utcfromtimestamp(v1.timestamp())print(v2) """ctime = datetime.datetime.now()utc_ctime = datetime.datetime.utcfromtimestamp(ctime.timestamp()) s10 = datetime.timedelta(seconds=10)ctime_x = utc_ctime + s10 # 使用apply_async并设定时间result = func.apply_async(args=[1, 3], eta=ctime_x)print(result.id)

类似于contab的定时任务

"""celery beat -A projcelery worker -A proj -l info """from celery import Celeryfrom celery.schedules import crontab app = Celery('tasks', broker='amqp://147.918.134.86:5672', backend='amqp://147.918.134.86:5672', include=['proj.s1', ])app.conf.timezone = 'Asia/Shanghai'app.conf.enable_utc = False app.conf.beat_schedule = {    # 'add-every-10-seconds': {    #     'task': 'proj.s1.add1',    #     'schedule': 10.0,    #     'args': (16, 16)    # },    'add-every-12-seconds': {        'task': 'proj.s1.add1',        'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),        'args': (16, 16)    },}

注:如果想要定时执行类似于crontab的任务,需要定制 Scheduler来完成。

Flask中应用Celery

pro_flask_celery/├── app.py├── celery_tasks    ├── celery.py    └── tasks.py

app.py

#!/usr/bin/env python# -*- coding:utf-8 -*-from flask import Flaskfrom celery.result import AsyncResultfrom celery_tasks import tasksfrom celery_tasks.celery import celeryapp = Flask(__name__)TASK_ID = None@app.route('/')def index():    global TASK_ID    result = tasks.func.delay()    TASK_ID = result.id    return "任务已经提交"@app.route('/result')def result():    global TASK_ID    result = AsyncResult(id=TASK_ID, app=celery)    if result.ready():        return result.get()    return "xxxx"if __name__ == '__main__':    app.run()

celery_tasks/celery.py

#!/usr/bin/env python# -*- coding:utf-8 -*-from celery import Celeryfrom celery.schedules import crontabcelery = Celery('func',                broker='redis://192.168.110.148:6379',                backend='redis://192.168.110.148:6379',                include=['celery_tasks.tasks'])# 时区celery.conf.timezone = 'Asia/Shanghai'# 是否使用UTCcelery.conf.enable_utc = False

celery_task/tasks.py

#!/usr/bin/env python# -*- coding:utf-8 -*-import timefrom .celery import celery@celery.taskdef hello(*args, **kwargs):    print('执行hello')    return "hello"@celery.taskdef func(*args, **kwargs):    print('执行func')    return "func"@celery.taskdef hhhhhh(*args, **kwargs):    time.sleep(5)    return "任务结果"

记录

为了定时调用任务,你必须添加记录到打点列表中:

from celery import Celeryfrom celery.schedules import crontabapp = Celery()@app.on_after_configure.connectdef setup_periodic_tasks(sender, **kwargs):    # 每10秒调用 test('hello') .    sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')    # 每30秒调用 test('world')     sender.add_periodic_task(30.0, test.s('world'), expires=10)    # 每周一上午7:30执行    sender.add_periodic_task(        crontab(hour=7, minute=30, day_of_week=1),        test.s('Happy Mondays!'),    )@app.taskdef test(arg):    print(arg)

用on_after_configure处理器进行这些设置意味着当使用test.s()时我们不会在模块层面运行app 。

add_periodic_task() 函数在幕后会添加记录到beat_schedule设定,同样的设定可以用来手动设置定时任务:

例子: 每30秒运行 tasks.add .

app.conf.beat_schedule = {    'add-every-30-seconds': {        'task': 'tasks.add',        'schedule': 30.0,        'args': (16, 16)    },}app.conf.timezone = 'UTC'

一般会使用配置文件进行配置,如下 celeryconfig.py:

broker_url = 'pyamqp://'result_backend = 'rpc://'task_serializer = 'json'result_serializer = 'json'accept_content = ['json']timezone = 'Europe/Oslo'enable_utc = Truebeat_schedule = {    'add-every-30-seconds': {        'task': 'tasks.add',        'schedule': 30.0,        'args': (16, 16)    },}

程序里使用

app.config_from_object('celeryconfig')注意如果你的参数元组里只有一个项目,只用一个逗号就可以了,不要圆括号。

时间表使用时间差意味着每30秒间隔会发送任务(第一个任务在celery定时器开启后30秒发送,然后上每次距一次运行后30秒发送一次)

可使用的属性

task:要执行的任务名字

schedule:执行的频率[可以是整数秒数,时间差,或者一个周期( crontab)。你也可以自 定义你的时间表类型,通过扩展schedule接口]

args:位置参数 (list 或 tuple)

kwargs:键值参数 (dict)

options:执行选项 (dict)[这可以是任何被apply_async()支持的参数与—-exchange, routing_key, expires,等]

relative:如果 relative 是 true ,时间表“由时钟时间”安排,意味着 频率近似到最近的秒,分钟,小时或天,这取决于时间差中的时间间隔[默认relative是false,频率不会近似,会相对于celery的启动时间]

Crontab 表达式语法

ff074ff9bd98d5753ab2b23cf2fca008.png

开启调度

开启celery定时服务

celery -A proj beat

可以把定时器嵌入到工人(worker)中,通过启用workers -B选项,如果你永远不会运行超过一个工人节点这就会很方便。但这不太常见,不推荐在生产环境这样使用

celery -A proj worker -B

定时器需要在本地数据库文件(默认名为 celerybeat-schedule )存储任务上次运行时间,所以它需要在当前目录中写权限。或者你也可以给这个文件指定一个位置

celery -A proj beat -s /home/celery/var/run/celerybeat-schedule

#Python##每天学python##Python入门推荐#

57f000d0e1f7937d75ddfd5b6d91c034.png
8d2440ad6a25f4807bdc57f694b187a0.png
3844b74ae87fbb6a8e3da6656bc9751c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值