python datatime 平均值_python-如何在不重新采样的情况下将每月xarray数据集转换为年度平均值?...

本文介绍如何在不使用`xarray.Dataset.resample`的情况下,处理无法识别日历类型的xarray数据集,将其月度平均表面温度转换为年度平均值。通过创建新的'year'和'month'坐标,并利用`groupby`方法实现这一目标。此外,讨论了xarray与INGRID数据集之间的不兼容性问题。
摘要由CSDN通过智能技术生成

我有一个xarray,它使用open_dataset从服务器读取服务器的月平均表面温度,且array_code_times = False,因为xarray无法识别日历类型.

经过一些操作后,我得到了表面温度(‘ts’)和时间(‘T’)的数据集my_dataset:

Dimensions: (T: 1800)

Coordinates:

* T (T) float32 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 ...

Data variables:

ts (T) float64 246.6 247.9 250.7 260.1 271.9 281.1 283.3 280.5 ...

“ T”具有以下属性:

Attributes:

pointwidth: 1.0

calendar: 360

gridtype: 0

units: months since 0300-01-01

我想获取此月度数据并计算年度平均值,但是由于T坐标不是日期时间,因此无法使用xarray.Dataset.resample.现在,我只是在转换为一个numpy数组,但是我想要一种保存xarray数据集的方法.

我目前的基本方法:

temps = np.mean(np.array(my_dataset['ts']).reshape(-1,12),axis=1)

years = np.array(my_dataset['T'])/12

我感谢您的帮助,即使最好的方法是重新定义时间坐标以使用重采样.

编辑:

询问如何创建xarray,它是通过以下操作完成的:

import numpy as np<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值