我有一个xarray,它使用open_dataset从服务器读取服务器的月平均表面温度,且array_code_times = False,因为xarray无法识别日历类型.
经过一些操作后,我得到了表面温度(‘ts’)和时间(‘T’)的数据集my_dataset:
Dimensions: (T: 1800)
Coordinates:
* T (T) float32 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 ...
Data variables:
ts (T) float64 246.6 247.9 250.7 260.1 271.9 281.1 283.3 280.5 ...
“ T”具有以下属性:
Attributes:
pointwidth: 1.0
calendar: 360
gridtype: 0
units: months since 0300-01-01
我想获取此月度数据并计算年度平均值,但是由于T坐标不是日期时间,因此无法使用xarray.Dataset.resample.现在,我只是在转换为一个numpy数组,但是我想要一种保存xarray数据集的方法.
我目前的基本方法:
temps = np.mean(np.array(my_dataset['ts']).reshape(-1,12),axis=1)
years = np.array(my_dataset['T'])/12
我感谢您的帮助,即使最好的方法是重新定义时间坐标以使用重采样.
编辑:
询问如何创建xarray,它是通过以下操作完成的:
import numpy as np<