库xarray可以帮我们读取出nc文件的内容,并生成dataset,我们通过取dataarray,通过计算来达到各种目的。
那么,要如何通过xarray读出nc文件内容并简简单单画个图呢?以下是我的学习心得:
第一步我使用open_dataset函数,打开.nc文件并查看文件内容,得到变量名‘dust_index’,'lat','lon',这里可以看到‘coordinate’“坐标”项,是以时间为坐标的。
用变量来存储.nc中的变量,并可以用.shape方法查看dust_index的维度
这里我们可以看到是(经度,纬度,时间)的格式,名字分别是‘longitude’,'latitude','time'。使用切片方法,可以得到对应时间的数据。
xarray变量的切片方法有很多,其中最简单的就是像取列表一样,按理说也可以用布尔判断来取值(这里就不演示了),只要是整数以及对应整数列表都可以。我们看变量那边,dust_index.sel (longitude= , latitude= , time= ),求平均值,这里可以用笨方法,不调用函数,直接用for循环累加再除;也可以用np.mean选择合适的“方向”进行平均。
讲到这里,程序基本上就写完了,别忘了调用matplotlib.pyplot,用contourf来画图,原本遇到了一些困难,生成的图像经纬度调转......
直到翻阅了手册才知道,contourf的x,y可以是两个相同的列表,用numpy的meshgrid可以生成,这样就可以对图像进行反转,找到一个合适的即可
大家就可以通过个人需求修改cmap,添加标题等等
代码(关于画图那块用的都是默认值,不太规范)附上:
import xarray as xr import numpy as np import matplotlib.pyplot as plt Location = '/Users/liao/Desktop/' Filename = 'mask_1961_2014_China_dust_index_10du_200km_month.nc' DataSet = xr.open_dataset(Location+Filename) x = DataSet.lon y = DataSet.lat z = DataSet.dust_index V = np.mean(z, 2) plt.figure() y, x = np.meshgrid(y, x) plt.contourf(y, x, V) plt.colorbar() plt.show()
下面可以通过调用cartopy来画出自己想要的效果 ,这里就不演示了。