aic值检验 p值_R语言入门之独立性检验

本文介绍了R语言中进行独立性检验的三种方法:卡方检验、Fisher精确检验和Mantel-Haenszel检验。通过实例展示了如何使用这些检验来判断变量之间的相关性,并解释了检验结果中的p值和统计假设。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

独立性检验

1. 卡方检验

对于2维的频率表,我们可以使用R语言的卡方检验函数chisq.test(x)来进行独立性检验,用以判断行变量和列变量之间是否相关。其实独立性检验本身就是用来判断变量之间相关性的方法,如果两个变量彼此独立,那么两者统计上就是不相关的。

需要注意的是卡方检验要求列联表中每格的数值或者期望值大于5,如果该条件不满足,那么R中就会使用Yate's矫正公式进行计算。

A <- c(rep("male",15),rep("female",20),rep("male",15))# 创建变量A
B <- c(rep("healthy",4),rep("sick",35),rep("healthy",11)) # 创建变量B
C <- c(rep("smoker",26), rep("nonsmoker",24)) # 创建变量C
mydata <- data.frame(A,B,C) # 利用以创建的变量构建数据框
mytable <- table(A,C) #生成二维频数表
chisq.test(mytable) #卡方检验判断A和B的相关性

Pearson's Chi-squared test with Yates' continuity correction

data: mytable

X-squared = 0.0033387, df = 1, p-value = 0.9539

在这里,卡方检验的假设检验是:

(1) 零假设(H0):吸烟和性别不相关&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值