独立性检验
1. 卡方检验
对于2维的频率表,我们可以使用R语言的卡方检验函数chisq.test(x)来进行独立性检验,用以判断行变量和列变量之间是否相关。其实独立性检验本身就是用来判断变量之间相关性的方法,如果两个变量彼此独立,那么两者统计上就是不相关的。
需要注意的是卡方检验要求列联表中每格的数值或者期望值大于5,如果该条件不满足,那么R中就会使用Yate's矫正公式进行计算。
A <- c(rep("male",15),rep("female",20),rep("male",15))# 创建变量A
B <- c(rep("healthy",4),rep("sick",35),rep("healthy",11)) # 创建变量B
C <- c(rep("smoker",26), rep("nonsmoker",24)) # 创建变量C
mydata <- data.frame(A,B,C) # 利用以创建的变量构建数据框
mytable <- table(A,C) #生成二维频数表
chisq.test(mytable) #卡方检验判断A和B的相关性
Pearson's Chi-squared test with Yates' continuity correction
data: mytable
X-squared = 0.0033387, df = 1, p-value = 0.9539
在这里,卡方检验的假设检验是:
(1) 零假设(H0):吸烟和性别不相关&#