内存分配算法(FF、BF、MF)

本文深入探讨了操作系统中动态分区分配的原理与实现,包括空闲分区表和链表的维护,以及首次适应、最佳适应和最差适应算法的内存分配策略。

动态分区分配

最近在学习操作系统内存分配方面的知识点,小小的总结一下知识点。

根据进程的实际需要,动态的为之分配内存空间。在实现动态分区分配时,将涉及到分区分配中所用到的数据结构、分区分配算法和分区的分配与回收操作三方面的问题。

我的理解是,动态分区分配是按照作业需要的主存空间大小来分配的,当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离,主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。为了说明哪些区是空闲的,可以用来装入新作业,必须要有一张空闲区说明表。


由此也引入了空闲分区表和空闲分区链的概念

  • 动态分区分配中的数据结构

  1. 空闲分区表

意思就是,在系统中设置一张空闲分区表,用于记录每个空闲分区的情况。每个空闲分区占一个表目,表目中包括分区号、分区大小、分区始址等数据项。

  1. 空闲分区链

为了实现对分区的分配和链接,在每个分区的起始部分设置一些用于控制分区分配的信息,以及用于链接各分区所用的前向指针,在分区尾部设置一些后向指针。通过这些就可以把所有的空闲分区链接成一个双向链。

  • 分区分配操作

分配内存和回收内存
  • 分配内存

系统应利用某种分配算法,从空闲分区链(表)中找到所需大小的分区。设请求的分区大小为u.size, 表中每个空闲分区的大小可表示为m.size.若m.size-u.size≤size(size是事先规定的不再切割的剩余分区的大小),说明多余部分太小,可不再切割,将整个分区分配给请求者。否则(即多余部分超过size),便从该分区中按请求的大小划分出一块内存空间分配出去,余下的部分仍留在空闲分区链(表)中。然后,将分配区的首址返回给调用者。

  • 回收内存

当进程运行完毕释放内存时,系统根据回收区的首址,从空闲区链(表)中找到相应的插入点,此时可能出现以下四种情况之一:

  (1)回收区与插入点的前一个空闲分区F1相邻接。 此时应将回收区与插入点的前一分区合并,不必为回收分区分配新表项,而只需修改其前一分区F1的大小。

  (2)回收分区与插入点的后一空闲分区F2相邻接。此时也可将两分区合并,形成新的空闲分区,但用回收区的首址作为新空闲区的首址,大小为两者之和。

  (3)回收区同时与插入点的前、后两个分区邻接。此时将三个分区合并,使用F的表项和F1的首址,取消F2的表项,大小为三者之和。
  
  (4)回收区既不与F1邻接,又不与F2邻接。这时应为回收区单独建立一一个新表项,填写回收区的首址和大小,并根据其首址插入到空闲链中的适当位置。
  • 内存分配算法

  • 首次适应算法(FirstFit):从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配给作业,这种方法的目的在于减少查找时间。为适应这种算法,空闲分区表(空闲区链)中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲区,在低址空间造成许多小的空闲区,在高地址空间保留大的空闲区。

  • 最佳适应算法(BestFit):从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。该算法保留大的空闲区,但造成许多小的空闲区。

  • 最差适应算法(WorstFit):从全部空闲区中找出能满足作业要求的、且大小最大的空闲分区,从而使链表中的结点大小趋于均匀,适用于请求分配的内存大小范围较窄的系统。为适应此算法,空闲分区表(空闲区链)中的空闲分区按大小从大到小进行排序,自表头开始查找到第一个满足要求的自由分区分配。该算法保留小的空闲区,尽量减少小的碎片产生。

  • 伙伴算法(buddy):使用二进制优化的思想,将内存以2的幂为单位进行分配,合并时只能合并是伙伴的内存块,两个内存块是伙伴的三个条件是:

1.大小相等

2.地址连续

3.两个内存块分裂自同一个父块(其实只要判断低地址的内存块首地址是否是与父块地址对齐,即合并后的首地址为父块大小的整数倍)使用lowbit等位运算可以o(1)判断。

内存分配算法实现(无伙伴算法):

#include<iostream>
#include<stdlib.h>
using namespace std;
 
#define Free 0 //空闲状态
#define Busy 1 //已用状态
#define OK 1    //完成
#define ERROR 0 //出错
#define MAX_length 640 //最大内存空间为640KB
typedef int Status;
int flag;
 
typedef struct freearea//定义一个空闲区说明表结构
{
    long size;   //分区大小
    long address; //分区地址
    int state;   //状态
}ElemType;
 
// 线性表的双向链表存储结构
typedef struct DuLNode
{
    ElemType data;
    struct DuLNode *prior; //前趋指针
    struct DuLNode *next;  //后继指针
}
 
DuLNode,*DuLinkList;
DuLinkList block_first; //头结点
DuLinkList block_last;  //尾结点
Status alloc(int);//内存分配
Status free(int); //内存回收
Status First_fit(int);//首次适应算法
Status Best_fit(int); //最佳适应算法
Status Worst_fit(int); //最差适应算法
void show();//查看分配
Status Initblock();//开创空间表
 
Status Initblock()//开创带头结点的内存空间链表
{
    block_first=(DuLinkList)malloc(sizeof(DuLNode));
    block_last=(DuLinkList)malloc(sizeof(DuLNode));
    block_first->prior=NULL;
    block_first->next=block_last;
    block_last->prior=block_first;
    block_last->next=NULL;
    block_last->data.address=0;
    block_last->data.size=MAX_length;
    block_last->data.state=Free;
    return OK;
}
 
//分配主存
Status alloc(int ch)
{
    int request = 0;
    cout<<"请输入需要分配的主存大小(单位:KB):";
    cin>>request;
    if(request<0 ||request==0)
    {
        cout<<"分配大小不合适,请重试!"<<endl;
        return ERROR;
    }
 
    if(ch==2) //选择最佳适应算法
    {
        if(Best_fit(request)==OK) cout<<"分配成功!"<<endl;
        else cout<<"内存不足,分配失败!"<<endl;
        return OK;
    }
	if(ch==3) //选择最差适应算法
    {
        if(Worst_fit(request)==OK) cout<<"分配成功!"<<endl;
        else cout<<"内存不足,分配失败!"<<endl;
        return OK;
    }
    else //默认首次适应算法
    {
        if(First_fit(request)==OK) cout<<"分配成功!"<<endl;
        else cout<<"内存不足,分配失败!"<<endl;
        return OK;
    }
}
 
//首次适应算法
Status First_fit(int request)
{
    //为申请作业开辟新空间且初始化
    DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));
    temp->data.size=request;
    temp->data.state=Busy;
 
    DuLNode *p=block_first->next;
    while(p)
    {
        if(p->data.state==Free && p->data.size==request)
        {//有大小恰好合适的空闲块
            p->data.state=Busy;
            return OK;
            break;
        }
        if(p->data.state==Free && p->data.size>request)
        {//有空闲块能满足需求且有剩余
            temp->prior=p->prior;
            temp->next=p;
            temp->data.address=p->data.address;
            p->prior->next=temp;
            p->prior=temp;
            p->data.address=temp->data.address+temp->data.size;
            p->data.size-=request;
            return OK;
            break;
        }
        p=p->next;
    }
    return ERROR;
}
 
 
 
//最佳适应算法
Status Best_fit(int request)
{
    int ch; //记录最小剩余空间
    DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));
    temp->data.size=request;
    temp->data.state=Busy;
    DuLNode *p=block_first->next;
    DuLNode *q=NULL; //记录最佳插入位置
 
    while(p) //初始化最小空间和最佳位置
    {
        if(p->data.state==Free && (p->data.size>=request) )
        {
			if(q==NULL)
			{
				q=p;
				ch=p->data.size-request;
			}
			else if(q->data.size > p->data.size)
			{
				q=p;
				ch=p->data.size-request;
			}
        }
        p=p->next;
    }
 
    if(q==NULL) return ERROR;//没有找到空闲块
    else if(q->data.size==request)
    {
        q->data.state=Busy;
        return OK;
    }
	else
	{
        temp->prior=q->prior;
        temp->next=q;
        temp->data.address=q->data.address;
        q->prior->next=temp;
        q->prior=temp;
        q->data.address+=request;
        q->data.size=ch;
        return OK;
    }
	return OK;
}
 
//最差适应算法
Status Worst_fit(int request)
{
    int ch; //记录最大剩余空间
    DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));
    temp->data.size=request;
    temp->data.state=Busy;
    DuLNode *p=block_first->next;
    DuLNode *q=NULL; //记录最佳插入位置
 
    while(p) //初始化最大空间和最佳位置
    {
        if(p->data.state==Free && (p->data.size>=request) )
        {
			if(q==NULL)
			{
				q=p;
				ch=p->data.size-request;
			}
			else if(q->data.size < p->data.size)
			{
				q=p;
				ch=p->data.size-request;
			}
        }
        p=p->next;
    }
 
    if(q==NULL) return ERROR;//没有找到空闲块
    else if(q->data.size==request)
    {
        q->data.state=Busy;
        return OK;
    }
	else
	{
        temp->prior=q->prior;
        temp->next=q;
        temp->data.address=q->data.address;
        q->prior->next=temp;
        q->prior=temp;
        q->data.address+=request;
        q->data.size=ch;
        return OK;
    }
	return OK;
}
 
//主存回收
Status free(int flag)
{
    DuLNode *p=block_first;
	for(int i= 0; i <= flag; i++)
		if(p!=NULL)
			p=p->next;
		else
			return ERROR;
 
	p->data.state=Free;
    if(p->prior!=block_first && p->prior->data.state==Free)//与前面的空闲块相连
    {
        p->prior->data.size+=p->data.size;
        p->prior->next=p->next;
        p->next->prior=p->prior;
		p=p->prior;
    }
    if(p->next!=block_last && p->next->data.state==Free)//与后面的空闲块相连
    {
        p->data.size+=p->next->data.size;
        p->next->next->prior=p;
        p->next=p->next->next;
    }
	if(p->next==block_last && p->next->data.state==Free)//与最后的空闲块相连
    {
		p->data.size+=p->next->data.size;
        p->next=NULL;
    }
 
    return OK;
}
 
//显示主存分配情况
void show()
{
	int flag = 0;
    cout<<"\n主存分配情况:\n";
    cout<<"++++++++++++++++++++++++++++++++++++++++++++++\n\n";
    DuLNode *p=block_first->next;
	cout<<"分区号\t起始地址\t分区大小\t状态\n\n";
    while(p)
    {
        cout<<"  "<<flag++<<"\t";
        cout<<"  "<<p->data.address<<"\t\t";
        cout<<" "<<p->data.size<<"KB\t\t";
        if(p->data.state==Free) cout<<"空闲\n\n";
        else cout<<"已分配\n\n";
        p=p->next;
    }
    cout<<"++++++++++++++++++++++++++++++++++++++++++++++\n\n";
}
 
//主函数
int main()
{
    int ch;//算法选择标记
    cout<<"请输入所使用的内存分配算法:\n";
    cout<<"(1)首次适应算法\n(2)最佳适应算法\n(3)最差适应算法\n";
 
    cin>>ch;
	while(ch<1||ch>3)
	{
		cout<<"输入错误,请重新输入所使用的内存分配算法:\n";
		cin>>ch;
	}
    Initblock(); //开创空间表
    int choice;  //操作选择标记
    while(1)
    {
		show();
		cout<<"请输入您的操作:";
        cout<<"\n1: 分配内存\n2: 回收内存\n0: 退出\n";
 
        cin>>choice;
        if(choice==1) alloc(ch); // 分配内存
        else if(choice==2)  // 内存回收
        {
            int flag;
            cout<<"请输入您要释放的分区号:";
            cin>>flag;
            free(flag);
        }
        else if(choice==0) break; //退出
        else //输入操作有误
        {
            cout<<"输入有误,请重试!"<<endl;
            continue;
        }
    }
}
 
### 内存分配算法 FF(首次适应)和 BF(最佳适应) #### 首次适应 (First Fit, FF) 首次适应是一种简单的内存分配策略,当有一个新的进程请求内存时,系统会从低地址向高地址扫描空闲分区列表,直到找到第一个足够大的空闲区为止。一旦找到了合适的区域,则该部分会被分配给新进程。 这种方法的优点在于实现简单且效率较高,因为每次只需要遍历一次链表即可完成查找操作[^1]。然而,长期使用可能导致存储碎片化严重——即存在大量小块不可用的空间散布在整个可用空间内,从而降低了大块连续空间的有效利用率。 ```python def first_fit(partitions, process_size): """模拟首次适配算法""" for i, part in enumerate(partitions): if part['size'] >= process_size and not part['allocated']: partitions[i]['allocated'] = True return f"Process allocated at partition {i}" return "No suitable partition found" ``` #### 最佳适应 (Best Fit, BF) 相比之下,最佳适应会在整个空闲分区列表中寻找最适合当前需求的小型空闲区来进行分配。具体来说就是选择能够恰好满足所需容量的那个最小的自由区块。虽然这种方式可以最大限度地减少外部碎片,但是由于需要不断地对剩余项进行排序或线性搜索,因此其执行成本相对更高一些。 ```python def best_fit(partitions, process_size): """模拟最佳适配算法""" candidates = [(idx, p) for idx, p in enumerate(partitions) if p['size'] >= process_size and not p['allocated']] if not candidates: return "No suitable partition found" chosen_idx, _ = min(candidates, key=lambda x: x[1]['size']) partitions[chosen_idx]['allocated'] = True return f"Process allocated at optimal partition {chosen_idx}" ``` 两种方法各有优劣: - **首次适应**:易于理解和实施;对于频繁变化的任务环境表现良好;可能会造成较高的内部/外部碎片。 - **最佳适应**:能更有效地利用零散的小片断;但在某些情况下可能增加额外的时间复杂度用于挑选最优解;同样面临一定程度上的碎片问题。 在实际应用中,开发者需根据具体的场景特点以及系统的性能指标来决定采用哪种方式更为合适。如果应用程序经常创建和销毁较小的对象,那么最佳适应可能是更好的选择。而对于那些对象生命周期较长的应用而言,首次适应或许更加适用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值