python清华网址扩展库_清华大学开源用于网络嵌入的工具包 OpenNE

清华大学计算机科学与技术系的研究人员近日开源了一款 NE/NRL 训练和测试框架 —— OpenNE,旨在帮助开发者对 NE/NRL(Network Representation Learning,网络表示学习)开展相关的实验和研究。

OpenNE 统一了不同 NE 模型输入和输出接口,并为每个模型提供可扩展选项。此外,还基于 TensorFlow 实现了经典 NE 模型,使得这些模型可以用 GPU 进行训练。

OpenNE 实现和修改的模型包括 DeepWalk、LINE、node2vec、GraRep、TADW 和 GCN,后续还将根据已公布的NRL 论文持续实现更多有代表性的 NE 模型。

与其他实现对比

运行环境:CPU:Intel(R)Xeon(R)CPU E5-2620 v3 @ 2.40GHz

下面是在不同数据集上对不同方法的节点分类结果。将表征维度设置为 128,GraRep 中的 kstep=4,node2vec 中 p=1,q=1。

BlogCatalog: 10312 nodes, 333983 edges, 39 labels, 非定向:

data/blogCatalog/bc_adjlist.txt

data/blogCatalog/bc_edgelist.txt

data/blogCatalog/bc_labels.txt

Wiki: 2405 nodes, 17981 edges, 19 labels, 定向:

data/wiki/Wiki_edgelist.txt

data/wiki/Wiki_category.txt

cora: 2708 nodes, 5429 edges, 7 labels, 定向:

data/cora/cora_edgelist.txt

data/cora/cora.features

data/cora/cora_labels.txt

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值