
本文将推导出一些新的三角形面积公式,这些公式的特点是与三角形中的一些线段和对边所成的角度相关联,并把这些角度当成已知元素。
首先,我们来推导一下中线与对边的夹角公式。

如上中线与底边的夹角图所示,AD是BC边的中线,
在三角形ABD中,应用正弦定理,得:
而
即:
于是有:
这便是三角形中线与对边的夹角公式。
于是我们得到了下面的三角形面积公式:
公式六十三:
当我们取
公式三十六的推导时,我们是为了求解
其实很简单,只需要将三角形ABC分成两个小三角形,分别利用面积公式二就可以得到了,即:
于是我们便有了下面的面积公式。公式六十四:
然后,我们来推导一下角平分线与对边的夹角公式。

如上面的角平分线与对边夹角图所示,AD为角A的平分线,
我们可以看到:
于是
于是
即
在三角形ABD中,应用正弦定理:
在三角形ACD中,应用正弦定理:
而
于是
于是
利用公式
公式六十五:
可以证明上式的分母一定大于0,故不加绝对值。
在这里,我们来证明一下《三角形的面积公式六叙》中的公式五十八。
由上面推导公式六十五的过程可知:
同时
于是
由正弦定理即比例性质:
即:
于是有:
由
而
于是:
证毕。
与公式六十四相似,对于角平分线也有一组公式:
公式六十六:
证明:由A作底边BC的垂线,即
由公式六十四和公式六十六来看,这样求解面积的方法可以推广到任意三角形内的线段,我们利用《三角形中的线段》一文中的线段长公式,并定义线段与对边的夹角为
公式六十七:
轮换a,b,c,A,B,C,即可得到另外两个式子。
总结:公式六十六这个求解面积的公式实际上就是底乘高的一半,只不过换成了两条线段的长度的乘积与其夹角正弦乘积的一半,由于两个三角形可以拼成一个四边形,所以这个公式同样适用于四边形,即两条对角线乘积与其夹角正弦乘积的一半,这在后面的文章里,说到四边形的面积时,我们还会详细讨论。