切比雪夫多项式c语言csdn,切比雪夫多项式

切比雪夫多项式

切比雪夫多项式是与棣美弗定理有关,以递归方式定义的一系列正交多项式序列。

通常,第一类切比雪夫多项式以符号Tn表示, 第二类切比雪夫多项式用Un表示。切比雪夫多项式 Tn 或 Un 代表 n

阶多项式。

切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。

在微分方程的研究中,数学家提出切比雪夫微分方程

相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。 这些方程是斯图姆-刘维尔微分方程的特殊情形.

定义:第一类切比雪夫多项式由以下递推关系确定

也可以用母函数表示

第二类切比雪夫多项式 由以下递推关系给出

此时母函数为

从三角函数定义:第一类切比雪夫多项式由以下三角恒等式确定

其中 n = 0, 1, 2, 3, .... . 是关于 的 n次多项式,这个事实可以这么看: 是:

的实部(参见棣美弗公式),而从左边二项展开式可以看出实部中出现含

的项中, 都是偶数次的,从而可以表示成 的幂 。

用显式来表示

尽管能经常碰到上面的表达式但如果借助于复函数cos(z), cosh(z)以及他们的反函数,则有

类似,第二类切比雪夫多项式满足

以佩尔方程定义:切比雪夫多项式可被定义为佩尔方程

在多项式环R[x] 上的解(e.g., 见 Demeyer (2007), p.70).

因此它们的表达式可通过解佩尔方程而得出:

归递公式

两类切比雪夫多项式可由以下双重递归关系式中直接得出:

T0(x) = 1  U − 1(x) = 1

Tn + 1(x) = xTn(x) − (1 − x2)Un

− 1(x)  Un(x) = xUn − 1(x) + Tn(x)

证明的方式是在下列三角关系式中用x 代替

xTn(x) − (1 − x2)Un(x)

正交性

Tn 和Un 都是区间[−1,1] 上的正交多项式系.

第一类切比雪夫多项式带权

即:

可先令x= cos(θ) 利用 Tn (cos(θ))=cos(nθ)便可证明.

类似地,第二类切比雪夫多项式带权 即:

基本性质

对每个非负整数n, Tn(x) 和 Un(x) 都为 n次多项式。 并且当n为偶(奇)数时,它们是关于x 的偶(奇)函数,

在写成关于x的多项式时只有偶(奇)次项。

时,Tn 的最高次项系数为 2n − 1 ,n = 0时系数为1 。

最小零偏差

对 ,在所有最高次项系数为1的n次多项式中 , 对零的偏差最小,即它是使得f(x)在[ − 1,1]

上绝对值的最大值最小的多项式。 其绝对值的最大值为 , 分别在 - 1 、 1 及 f 的其他 n − 1 个极值点上达到 。

两类切比雪夫多项式间的关系

两类切比雪夫多项式间还有如下关系:

切比雪夫多项式是超球多项式或盖根堡多项式的特例,

后者是雅可比多项式的特例.

切比雪夫多项式导数形式的递推关系可以由下面的关系式推出:

例子

前六个第一类切比雪夫多项式的图像,其中-1¼

-1¼

T5.

前几个第一类切比雪夫多项式是

前六个第一类切比雪夫多项式的图像,其中-1¼

-1¼

U5. 虽然图像中无法显示,我们实际有 Un(1)=n+1 以及 Un(-1)=(n+1)(-1)n.

前几个第二类切比雪夫多项式是

按切比雪夫多项式的展开式

一个N 次多项式按切比雪夫多项式的展开式为如下:

多项式按切比雪夫多项式的展开可以用 Clenshaw 递推公式计算。

切比雪夫根

两类的n次切比雪夫多项式在区间[−1,1]上都有n 个不同的根, 称为切比雪夫根, 有时亦称做 切比雪夫节点 ,因为是多项式插值时的 插值点 . 从三角形式中可看出Tn 的n个根分别是:

类似地, Un 的n个根分别是:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值