时间序列预测_时间序列预测(EXCEL版)

d7256f667679bd30e4c59327f12756c0.png

葛大娘

分享数分小技能

人生路上持续成长

  基本概念  ■  (一)时间序列 同一现象在不同时期的观察值排列而成的序列,如经济序列、人口序列,通过观测发展趋势、变化方向及速度等,建立预测模型。 (二)乘法模型 f1011ef08f515d63823aeb234bcf7e2e.png Yt为t时间内的序列; Tt为t时间内的趋势变动,即长期内呈现的某种持续上升或持续下降的变动; St为t时间内的季节变动,即一年内重复出现的周期性波动; Ct为t时间内的周期性或循环波动; It为t时间内的随机性或不规则波动。 ■  描述性分析  ■  (一)图形观察 通过作图,观察数据随时间变化的模式及趋势,一般较多使用折线图。 (二)计算增长率 1、环比增长率 848c7df25efe138c6583271ffbb9d130.png 2、定基增长率 cb9ad338240547dedae020c73df50132.png 3、平均增长率 也称平均增长速度、环比发展速度 b196d0d1c3f77bde1808f50ca0b6133d.png 4、两点要注意 (1)时间序列中有0值时不宜计算,这个因为不能除以0嘛。 (2)要将增长率与绝对水平结合来看。 ■  预测步骤  ■  (一)确定时间序列所包含的成分,即乘法模型中的趋势、季节、周期性等。 (二)找出适合此类时间序列的预测方法。 (三)评估预测方案,确定最佳预测方案。 (四)利用最佳预测方案进行预测。 ■  实例  ■  数据为葛大娘菜店历年各季度销售额 25461b4dda7e8ecf8eced2a6dc3c35ad.png (一)确定成分 1、通过折线图判定季节性是否存在。绘制出折线图后发现:各年趋势基本一致,呈现一定的季节性变化,并且都是逐年提升,应该存在一定上升的趋势。 84037357aa4066d02611474bf3ed876c.png 2、通过折线图判定趋势是否存在。需要先将宽型表格调整为长型表格,具体方法见今天的另一篇文章《你表宽,我表长,我转宽来你转长》。绘制折线图,添加趋势线后,发现整体趋势呈上升状态,并且波动呈季节性变化,与上述图形表达一致。 6a192721d96026db19ee53e0f0da9ccd.png (二)选择预测方法 已经判 定有季节性和趋势成分,试着使用EXCEL中的“回归”方法来进行。 (三)评估预测方法 1、构造季节性辅助列

957f45c110ce26672b9321a498136d33.png2、数据→数据分析→打开回归分析对话框

8e9d76800ada65dc01c910dbaf9b9fbd.png

6bda2f675c19bc6d2ee5bf95a29ea127.png3、在因变量区域输入销售额列,在自变量区域输入趋势、季度辅助列,勾选“标志”,输出区域可选本工作表,再勾选一下残差图和线性拟合图。

cdc2d391767b0fe08ccd9411ea14a6a9.png

4、确定后会得出一片表格和一堆图,只需要挑重点来看就可以。

回归统计表中主要看R2为,多重判定系数,用来评价回归方程的拟合程度,取值范围为[0,1],越接近1,表明拟合程度越好。一般实践中0.8以上就很理想了。

方差分析中主要看F检验量,用来检验自变量选择的是在α=0.05的水平下进行的检验,F显著性水平值远远小于0.05,表明自变量与因变量之间存在显著线性关系。

最后一个表中主要看各变量的显著性和回归系数,P值均远小于0.05,表明各自变量与因变量之间存在显著线性关系。

98f66838a68984adeec46d5c2bc7183d.png(四)使用预测方法进行预测

1、通过上一步得到回归方程,

2、增加预测值列,代入回归方程,计算得到各预测值。

8db10b4b5c929d66a853965b8be8bfce.png

3、选择实际销售额与预测值,绘制折线图

18cfe2d92f8af1e965baaad85392ba22.png4、预测下一年度销售额

在表格中将相关变量填写完整,预测值列会自动计算预测值。

a65fe7042cdb59db25e90ee3eec19e15.png5、绘制折线图,完工,撒花,再也不怕领导让你拍脑袋拍大腿瞎估啦!

10a11fd638c4a7f5a58f638a16cd0640.png

■  END  ■ e2cce37d85d234814a0d95813186ea5d.png
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页