python分组统计数据_【Python 数据分析】groupby分组统计

本文详细介绍了Python数据分析中DataFrame的groupby功能,包括如何根据条件拆分数据、对每个分组应用函数并合并结果。通过实例演示了简单分组统计、分组迭代、其他轴上的分组、通过字典或Series分组、函数分组以及使用各种分组函数进行计算,如mean、sum等。
摘要由CSDN通过智能技术生成

1.简介

(1)根据某些条件将数据拆分成组

(2)对每个组独立应用函数

(3)将结果合并到一个数据结构中

Dataframe在行(axis=0)或列(axis=1)上进行分组,将一个函数应用到各个分组并产生一个新值,然后函数执行结果被合并到最终的结果对象中。

df.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

2.实战演练

2.1 简单分组统计并聚合

import pandas as pd

import numpy as np

df = pd.DataFrame({'科目' : ['语文', '语文', '语文', '数学','数学'],

'姓名' : ['Jack', 'Lucy', 'Alice', 'Mark', 'Jhon'],

'性别' : ['man', 'woman', 'woman', 'man', 'man'],

'成绩' : [85, 90, 70, 60, 100]})

print(df)

print('------')

print(df.groupby('科目'), type(df.groupby('科目')))

print('------')

# 直接分组得到一个groupby对象,是一个中间数据,没有进行计算

a = df.groupby('科目').mean()

b = df.groupby(['科目','性别']).mean()

c = df.groupby(['科目'])['成绩'].mean() # 以A分组,算D的平均值

print(a,type(a),'\n',a.columns)

print(b,type(b),'\n',b.columns)

print

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值