kkt条件 弱对偶 强对偶_最优化系列 (3)—— 对偶问题和KKT条件

本文详细介绍了对偶问题和KKT条件,从拉格朗日函数到拉格朗日对偶函数,探讨了强对偶和弱对偶的概念。文章通过实例解释了KKT条件在非凸和凸问题中的应用,并阐述了互补松弛性和优化条件,为解决实际优化问题提供了理论基础。
摘要由CSDN通过智能技术生成

对偶问题和KKT条件

拉格朗日对偶函数

1.1 拉格朗日函数

我们讨论标准对偶问题:

我们用

表示
问题的最优值. 我们定义
问题的 拉格朗日函数为:

我们称

是不等式约束对应的拉格朗日乘子,

被称为对偶变量.

1.2 拉格朗日对偶函数

我们定义

如下:

由于当

固定时, 拉格朗日函数关于
是凸函数(线性函数), 所以
一定是凹函数.

1.3 最优值的下界

定理:对于任何

,
都是 最优值的一个下界:

这是因为对于任何一个可行解, 都有

, 所以我们有:

所以:

对于所有的可行解

取下确界就可以得到:

我们称满足

称为对偶可行解.

最小二乘法的对偶问题

The Lagrangian is:

Since

is convex respected to
, we can find the minimizing
form the optimality condition:

which yields

. Therefore dual function is:

which is a concave quadratic function.

Standard form LP

The Lagrangian function is:

Thus,

except when
, in which case it's
:

Two way partitioning problem

The Lagrangian function is:

Lagrangian dual function is:

Since

is dual feasible, then, this yields the bound on the optimal value
:

2. The Lagrange dual problem

Since each

with
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值