对偶问题和KKT条件
拉格朗日对偶函数
1.1 拉格朗日函数
我们讨论标准对偶问题:
我们用
我们称
和
被称为对偶变量.
1.2 拉格朗日对偶函数
我们定义
由于当
1.3 最优值的下界
定理:对于任何
这是因为对于任何一个可行解, 都有
所以:
对于所有的可行解
我们称满足
最小二乘法的对偶问题
The Lagrangian is:
Since
which yields
which is a concave quadratic function.
Standard form LP
The Lagrangian function is:
Thus,
Two way partitioning problem
The Lagrangian function is:
Lagrangian dual function is:
Since
2. The Lagrange dual problem
Since each