对偶问题和KKT条件
拉格朗日对偶函数
1.1 拉格朗日函数
我们讨论标准对偶问题:
我们用
表示
问题的最优值. 我们定义
问题的 拉格朗日函数为:
我们称
是不等式约束对应的拉格朗日乘子,
和
被称为对偶变量.
1.2 拉格朗日对偶函数
我们定义
如下:
由于当
固定时, 拉格朗日函数关于
是凸函数(线性函数), 所以
一定是凹函数.
1.3 最优值的下界
定理:对于任何
,
都是 最优值的一个下界:
这是因为对于任何一个可行解, 都有
和
, 所以我们有:
所以:
对于所有的可行解
取下确界就可以得到:
我们称满足
和
称为对偶可行解.
最小二乘法的对偶问题
The Lagrangian is:
Since
is convex respected to
, we can find the minimizing
form the optimality condition:
which yields
. Therefore dual function is:
which is a concave quadratic function.
Standard form LP
The Lagrangian function is:
Thus,
except when
, in which case it's
:
Two way partitioning problem
The Lagrangian function is:
Lagrangian dual function is:
Since
is dual feasible, then, this yields the bound on the optimal value
:
2. The Lagrange dual problem
Since each
with