python神经网络训练完了怎么输入得到结果_Python / Tensorflow - 我已经训练了卷积神经网络,如何测试它?...

我已经训练了一个卷积神经网络(CNN),其中包含我在二进制文件中的以下数据(标签,文件名,数据(像素)):

[array([2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1,

0, 2, 1, 0, 2, 1, 0]), array(['10_c.jpg', '10_m.jpg', '10_n.jpg', '1_c.jpg',

'1_m.jpg', '1_n.jpg', '2_c.jpg', '2_m.jpg',

'2_n.jpg', '3_c.jpg', '3_m.jpg', '3_n.jpg',

'4_c.jpg', '4_m.jpg', '4_n.jpg', '5_c.jpg',

'5_m.jpg', '5_n.jpg', '6_c.jpg', '6_m.jpg',

'6_n.jpg', '7_c.jpg', '7_m.jpg', '7_n.jpg',

'8_c.jpg', '8_m.jpg', '8_n.jpg', '9_c.jpg',

'9_m.jpg', '9_n.jpg'],

dtype='

[136, 137, 138, ..., 114, 110, 111],

[200, 200, 199, ..., 179, 178, 177],

...,

[146, 157, 165, ..., 202, 202, 201],

[228, 225, 222, ..., 219, 221, 223],

[128, 127, 127, ..., 133, 129, 127]])]

每批包含所有图像,并运行30个epohs:

EPOCH 0

0 0.476923

DONE WITH EPOCH

EPOCH 1

0 0.615385

DONE WITH EPOCH

EPOCH 2

0 0.615385

DONE WITH EPOCH

EPOCH 3

0 0.538462

DONE WITH EPOCH

EPOCH 4

0 0.384615

DONE WITH EPOCH

...

...

EPOCH 28

0 0.615385

DONE WITH EPOCH

EPOCH 29

0 0.692308

DONE WITH EPOCH

我的问题是我想尝试新的图像(测试),并想知道返回的类(0,1,2) . 在这种情况下我该怎么办?换句话说,我训练了CNN,但是如何测试呢?

EDIT-1

对于 Evaluating accuracy 点,测试20张图像时得到以下结果:

EPOCH 0

0 1.0

DONE WITH EPOCH

EPOCH 1

0 1.0

DONE WITH EPOCH

EPOCH 2

0 1.0

DONE WITH EPOCH

EPOCH 3

0 1.0

DONE WITH EPOCH

EPOCH 4

0 1.0

DONE WITH EPOCH

EPOCH 5

0 1.0

DONE WITH EPOCH

EPOCH 6

0 1.0

DONE WITH EPOCH

EPOCH 7

0 1.0

DONE WITH EPOCH

EPOCH 8

0 1.0

DONE WITH EPOCH

EPOCH 9

0 1.0

DONE WITH EPOCH

EPOCH 10

0 1.0

DONE WITH EPOCH

EPOCH 11

0 1.0

DONE WITH EPOCH

EPOCH 12

0 1.0

DONE WITH EPOCH

EPOCH 13

0 1.0

DONE WITH EPOCH

EPOCH 14

0 1.0

DONE WITH EPOCH

EPOCH 15

0 1.0

DONE WITH EPOCH

EPOCH 16

0 1.0

DONE WITH EPOCH

EPOCH 17

0 1.0

DONE WITH EPOCH

EPOCH 18

0 1.0

DONE WITH EPOCH

EPOCH 19

0 1.0

DONE WITH EPOCH

EPOCH 20

0 1.0

DONE WITH EPOCH

EPOCH 21

0 1.0

DONE WITH EPOCH

EPOCH 22

0 1.0

DONE WITH EPOCH

EPOCH 23

0 1.0

DONE WITH EPOCH

EPOCH 24

0 1.0

DONE WITH EPOCH

EPOCH 25

0 1.0

DONE WITH EPOCH

EPOCH 26

0 1.0

DONE WITH EPOCH

EPOCH 27

0 1.0

DONE WITH EPOCH

EPOCH 28

0 1.0

DONE WITH EPOCH

EPOCH 29

0 1.0

DONE WITH EPOCH

在应用 Getting the labels that the network produced for test data 点时,我得到以下内容:

EPOCH 0

0 0.0

DONE WITH EPOCH

EPOCH 1

0 0.0

DONE WITH EPOCH

EPOCH 2

0 0.0

DONE WITH EPOCH

EPOCH 3

0 0.0

DONE WITH EPOCH

EPOCH 4

0 0.0

DONE WITH EPOCH

EPOCH 5

0 0.0

DONE WITH EPOCH

EPOCH 6

0 0.0

DONE WITH EPOCH

EPOCH 7

0 0.0

DONE WITH EPOCH

EPOCH 8

0 0.0

DONE WITH EPOCH

EPOCH 9

0 0.0

DONE WITH EPOCH

EPOCH 10

0 0.0

DONE WITH EPOCH

EPOCH 11

0 0.0

DONE WITH EPOCH

EPOCH 12

0 0.0

DONE WITH EPOCH

EPOCH 13

0 0.0

DONE WITH EPOCH

EPOCH 14

0 0.0

DONE WITH EPOCH

EPOCH 15

0 0.0

DONE WITH EPOCH

EPOCH 16

0 0.0

DONE WITH EPOCH

EPOCH 17

0 0.0

DONE WITH EPOCH

EPOCH 18

0 0.0

DONE WITH EPOCH

EPOCH 19

0 0.0

DONE WITH EPOCH

EPOCH 20

0 0.0

DONE WITH EPOCH

EPOCH 21

0 0.0

DONE WITH EPOCH

EPOCH 22

0 0.0

DONE WITH EPOCH

EPOCH 23

0 0.0

DONE WITH EPOCH

EPOCH 24

0 0.0

DONE WITH EPOCH

EPOCH 25

0 0.0

DONE WITH EPOCH

EPOCH 26

0 0.0

DONE WITH EPOCH

EPOCH 27

0 0.0

DONE WITH EPOCH

EPOCH 28

0 0.0

DONE WITH EPOCH

EPOCH 29

0 0.0

DONE WITH EPOCH

为什么我得到 0 或 1 ?这些值是否有意义(即没有分数)?

EDIT-2

对于 Getting the labels that the network produced for test data ,当打印出标签值和每个纪元的准确性时,我得到以下(标签总是 0 ,虽然我只期待 0 或 2 ,精确度为 1 ):

EPOCH 0

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

EPOCH 1

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

EPOCH 2

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

EPOCH 3

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

EPOCH 4

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

EPOCH 5

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

.....

.....

EPOCH 28

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

EPOCH 29

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1.0

DONE WITH EPOCH

谢谢 .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值