voms下的反射大师_晓星说数学:让数学家折服的艺术大师埃舍尔

艺术家说:埃舍尔是当之无愧的艺术大师、空前绝后的艺术怪才!

哲学家说:埃舍尔是一个伟大的思想家,他不是通过语言和文字来表达他的伟大思想,而是通过绘画!

数学家说:埃舍尔是平面对称群的发现者、也是分形几何与数学艺术的开拓者!

物理学家说:如果你想象不出高维时空的模样,请看看埃舍尔是如何扭曲时空,把不可能变成了可能!

——题记

ee79e256487e4a341ce1ca04f6a35869.png

埃舍尔(M.C.Escher)是世界上最负盛名的艺术家之一,用"空前绝后"来形容也不为过。他是20世纪当之无愧的艺术大师,却至今无法被纳入20世纪艺术的任何一个流派;他不但拥有无数的普通"粉丝",而且被众多的科学家与哲学家视为知己,特别是数学界更把他视为横跨数学与艺术两个领域的"同道",尊其为"分形几何"与"数学艺术"的开拓者。他的版画曾被许多科学著作和杂志用作封面,1954年"国际数学学会" 破天荒在阿姆斯特丹专门为他举办了个人画展,这在现代艺术史上是绝无仅有的!

7e0d68b15bfdb20efa0817c7d9d48402.png

年轻的埃舍尔作为一个版画艺术家刚出道时,主要作品是风景画。他的风景版画手法细腻、逼真、传神,写实风格犹如黑白照片,可以看出艺术功底非常扎实。如果就这样遵循传统,中规中矩地创作下去,衣食无忧绝不成问题,但大师的才华就会淹没在平庸的作品上,也绝不会与数学结缘。

埃舍尔内心始终有一种自由创作的渴望,不断尝试各种不同风格的创作手法、以及各种不同的主题,包括立体主义、现实主义、新艺术主义和象征主义,还探索过版画技法,包括油毡浮雕、石刻、石板印刷,以及东方木版画技法。最终,埃舍尔找到了"镶嵌图形"作为艺术转型的突破口,并终其一生都对其怀有浓厚的兴趣,正如埃舍尔自己所说:"镶嵌图形仿佛有一种特殊的魔力,吸引着我不断去探索。"

107e83a2c09644badd7934704f80d91d.png

埃舍尔用人物与动物取代了传统"镶嵌画"中的几何图形,赋予了"镶嵌画"以新的生命,将"镶嵌"由"画"提升到了"艺术"!

《八张脸》是埃舍尔的第一幅比较成功的平面镶嵌作品,可以看出埃舍尔已经娴熟地掌握了"平移"、"旋转"与"对称"等几何变换;从艺术的角度看,画面上的八张脸形象迥异,正看可以看到四张、旋转180度又可以看到四张,女性中有端庄的、有浮艳的,男性中有诚挚的、有阴险的,看似亲密无间、相互交融,其实又彼此对立、背道而驰,令人不禁拍案叫绝!

48e331f56f1c393feca14faf0c7510be.png

《天使与恶魔》一直是埃舍尔钟爱的镶嵌艺术主题,曾为之创作了三件不朽的作品,前后长达二十年。左边的这幅是埃舍尔1941年的作品,也是欧几里得平面的《天使与恶魔》镶嵌,使用了三种对称变换:旋转对称,镜射对称,还有一种连数学家也不常遇的"滑移反射对称"。任何两个天使或恶魔形状与大小完全相同,彼此相差仅一个平移、旋转或镜像反射,也就是所谓的"欧氏空间几何变换"。艺术视觉上,天使与恶魔相互衬托,对比特别强烈:白色前景是双翼天使,黑色背景是蝙蝠状恶魔;人们凝视天使时,恶魔隐为背景;人们注视恶魔时,天使又融为背景;谁都无法既看到天使、同时又看到恶魔。作品的寓意非常具有哲理性:天使与恶魔对立统一,世界就是由天使与恶魔交织而成,天使与恶魔既相互斗争又相互依存。

第二年,埃舍尔用枫木雕刻了球面上的《天使与恶魔》镶嵌。同样地,任何两个天使或恶魔之间也是仅相差一个"球面几何变换",也就是三维欧氏空间的旋转加反射。可惜这件作品此次并未展出。

二十年后,埃舍尔的镶嵌艺术已经达到炉火纯青、登峰造极的境界,创作出了双曲空间的Poincaré 圆盘中的《天使与恶魔》,就是右边那幅圆盘形的镶嵌:天使与恶魔一组一组地分布在由内向外不断辐射的同心圆上,每个同心圆上"天使与恶魔"大小形状完全相同,而不同圆上"天使与恶魔"形状虽然相同、大小却不一样,从内向外逐渐缩小,越靠近边缘越小,越小分布越多,……直至无穷。数学上把这叫做"自相似变换",其实也是"分形几何"最显著的特征之一。

583ba2a8da8949b61fb396121ab88af8.png

埃舍尔的"镶嵌艺术",从欧氏几何到球面几何只用了一年,而从球面几何到双曲几何却花了二十年,整个人类则花了近两千年。

埃舍尔的Poincaré 圆盘上的《天使与恶魔》,也是其系列版画《圆的极限》中的第四幅。依我个人而言,我更喜欢《圆的极限》中的第三幅《金鱼》;《金鱼》哲理性虽然不比《天使与恶魔》,但艺术上却更胜一筹,是埃舍尔"黑白灰"三色为主的作品中为数不多的彩色佳作;尤其微妙的是:其中的金鱼既可以按三角形分类、也可以按四边形分类、还可以按弧线分类,无论怎么分,每一类金鱼都是从大到小"自相似"的,而且同一种颜色的金鱼必定位于同一条弧线上、朝着同一个方向游动。

f4fa742a63aab54237f22bd650b87d9e.png

埃舍尔在Poincaré 圆盘上表现"自相似"最为成功的镶嵌作品当属《蝴蝶》,不但画中的每一个局部都与整体相似,而且蝴蝶的翅膀以这样的方式着色,——形成相互正交的圆;更让数学家们惊讶的是,埃舍尔在这里发现了"色彩"这样一个新的对称群控制变量,这是数学家们意想不到的!

埃舍尔的很多镶嵌画即使用现代电子计算机技术也难于实现,更何况七八十年之前根本还没有电子计算机!如何用计算机程序"创作" 类似埃舍尔镶嵌艺术那样的艺术作品,已经发展成了一门新的学科,——数学艺术。

d3a6dbb51efe018d8822429164f03874.png

埃舍尔首创了"镶嵌艺术"中的"渐变",——画面中的某种图形或动物在观众不知不觉中逐渐变成了另一种图形或动物,其中最负盛名的作品就是《昼与夜》(又名《天与地》)。这幅图,从右向左,一群黑天鹅正由黑暗飞向光明,轮廓越来越清晰;从左向右,一群白天鹅正由光明飞向黑暗,轮廓也越来越为清晰;奇妙的是,黑天鹅不知道什么时候就渐变成了白天鹅;从下往上,地面上一块块黑白相间的麦田又不断上升,分别渐变成了天空中的黑天鹅与白天鹅。黑与白、无形与有形之间的"渐变"自然流畅、不知不觉,把黑与白的对立完美融合,让静止的画面充满了动感。

f1de2859d05f7db38a850b2c0d1e94b5.png

我对埃舍尔"镶嵌艺术"的认识始于上个世纪80年代初,那时我正在武汉大学数学系当研究生,师从近世代数权威张远达教授,学习"对称群"这一章的时候,张远达先生告诉我们:"平面对称群"迄今为止已经发现了17种,却不是数学家而是一位艺术家发现的,他就是埃舍尔,这是一个很了不起的数学发现;先生建议我们用"对称群"的观点去研究一下埃舍尔的镶嵌画,并说如果谁能够证明只存在17种"平面对称群",那也是一项了不起的数学成就。五六年之后,80年代中期,美国数学家波利亚(G.Polya)最终严格地证明了确实只存在17种"平面对称群",遗憾的是恩师未能看到这一天。

f519531c812a16b57e550304334f2293.png

绝大多数画家都在二维平面上努力地表现三维世界,埃舍尔却独树一帜,不但在二维平面上出神入化地表现出三维空间,而且突破了三维空间的限制,力图表现更高维的空间,甚至各种扭曲的、不可能空间。最具有代表性的作品就是《观景楼》和《瀑布》。这两幅作品不但令人惊奇,而且耐人寻味,读者不妨细细观赏、认真思考一番。

69db5c3e6e73314d1260e23184e04a62.png

另两幅代表作就是《阶梯宫》与《异度空间》。

这次展出的埃舍尔的作品中,数学味道最浓、哲学寓意最深、对我影响最大、也是我最喜爱的作品,共有三幅,那就是《红蚁》、《蜥蜴》与《互绘的手》。

440c877afc00f226128a53e05b89c8fa.png

《红蚁》与《骑士》所描绘的都是数学的一个分支——拓扑学中的"莫比乌斯带"。"莫比乌斯带"的制作非常简单:把一条普通的纸条捏住两端扭转180度、再粘贴起来,就成了一条"莫比乌斯带"。千万别小看这条"莫比乌斯带",具有正反两面的普通纸条就变成了只有一个面的"单侧曲面",在"莫比乌斯带"上爬行的蚂蚁不需要越过纸条的边缘(边界),就可以爬遍整条"莫比乌斯带",并且永远也爬不出这条有限的"莫比乌斯带"。

可以说,《红蚁》形象地揭示了蚂蚁这种"二维生物"的窘境与悲惨,——"二维生物"局限在它所生存的二维空间,无法理解、也不可能穿越近在咫尺的三维空间,终其一生只能在封闭的、有限的二维空间内活动。人类作为"三维生物",尽可以居高临下嘲笑蚂蚁的无知与卑贱,然而人类何尝又不是如此?!我们其实也被局限在我们所生活的三维空间,同样无法理解、也不可能穿越近在咫尺的更高维的空间,终其一生也只能在封闭的、有限的三维空间内活动;说不定就有更高维的生物正在居高临下注视着我们的一举一动,而我们竟未知未觉!

a221fdf503921e4f0e52525d96380e36.png

普通人无法穿越时空,埃舍尔却可以在他的艺术作品中游刃有余。他笔下的二维与三维空间,可以互相穿越循回,在《蜥蜴》中表现得淋漓尽致:这幅画中,一只灰色的蜥蜴先抬头、后收脚,从埃舍尔标志性的二维黑白灰三色平面镶嵌图中爬出,来到了三维世界,爬上一本代表理论的动物学书,再爬过一个作为理论和实际桥梁的平面三角形,然后爬上一个隐喻理想世界的立体正十二面体,打出一个喷烟的胜利响鼻,接着跳进一个装满世俗物品的铜钵,再跳回桌面,将头伸进原来的那幅二维平面镶嵌画,钻入原来的二维平面镶嵌图,圆满完成一个周期,如此可以无穷无尽地往复循环下去。

这是一个仁者见仁智者见智的作品,有人从中看出"艺术的本质就是欺骗",——貌似蜥蜴在二维与三维空间自由穿越,其实穿越来穿越去,最终依然还在二维画面中,我们所看到的不过是画笔的线条与阴影刻意渲染出的"立体感"的假象;有人从中看出人生的轮回与无奈,——不断循回穿越的"蜥蜴"就像当下的年轻人,经历了"十年寒窗、考入大学、求职竞争、职场拼搏、买房买车、结婚生子,……"他们的下一代、甚至再下一代,还要不断重复"十年寒窗、考入大学、求职竞争、职场拼搏、买房买车、结婚生子,……"这样的前一辈的生活轨迹,人生的意义又何在?

而我所看到的却是"周而复始、循环往复是宇宙的基本规律",天地运行"日出日落、月盈月亏、年复一年",自然变化"四季更替、寒来暑往、春夏秋冬",还有生命"旺盛衰落、生老病死、六道轮回",……,无一不是"周而复始、循环往复"的周期现象。

960442c4feb118f91d717066972b7ed0.png

《互绘的手》是埃舍尔的点睛之作:画面上有两只正在执笔画画的手,右手正在仔细地描绘左手的衣袖,并且很快就可以画完;与此同时,左手也正在执笔异常仔细地描绘右手,并且也正好处于快要结束的位置。画面戛然而止,把无限的疑惑留给我们,究竟是左手画右手,还是右手画左手?无论怎么看,都无法分辨清楚。两只手都画得立体感十足,非常逼真,生动,就连两只手上的皱纹也表现得栩栩如生,一只手仿佛就是另一只手的"镜像"。就在这样一幅画上,荒谬与真实,可能与不可能交织在一起,使画面充满了思辨的意味.带出了值得深思的问题:究竟谁画出了谁?谁是起点?谁是终点?谁是真理?谁是谬误?

我记得第一次欣赏埃舍尔《互绘的手》是上个世纪80年代中期,一本小书《GEB——一条永恒的金带》,那本书是侯世达的名著《哥德尔、艾舍尔、巴赫:集异璧之大成》的简译本。那时候我年轻气盛,正在兴致勃勃研究数学方法论,不知天高地厚,试图从方法论上找到化解"第三次数学危机"的突破口。看了侯世达的书,对书中这幅插图的印象极深,犹如醍醐灌顶:——数学理论自身的不完备性不可能从数学理论本身来解决!就好像埃舍尔画中的右手画左手、左手画右手,根本无法判断究竟是谁在画谁,唯一的办法是跳出画面,就可以清醒地看出既不是右手画左手、也不是左手画右手,而是画家埃舍尔创造了它们!这意味着我们要彻底解决数学理论的不完备性,只能期待上帝那双万能的手了!阿门!

ead62dca082ef612b56dc58852971191.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值