由离散傅里叶变换计算的每个傅里叶系数
数组的x是x元素的线性组合;请参见
关于wikipedia page on the discrete Fourier transform上X_k的公式,
我写为X_k = sum_(n=0)^(n=N-1) [ x_n * exp(-i*2*pi*k*n/N) ]
(也就是说,X是{}的离散傅里叶变换。)
如果x帴n是正态分布的,且均值和方差σ2是正态分布的,
再加上一点代数,就可以知道X_k的方差是和
x的方差
^{pr2}$
换言之,每个傅立叶系数的方差是相同的;
它是x中测量值的方差之和。在
使用你的符号,其中unc(z)是z的标准偏差unc(X_0) = unc(X_1) = ... = unc(X_(N-1)) = sqrt(unc(x1)**2 + unc(x2)**2 + ...)
(请注意,xuk的量级的分布是Rice distribution。)
下面的脚本演示了这个结果。在本例中,标准
x值的偏差从0.01线性增加到0.5。在import numpy as np
from numpy.fft import fft
import matplotlib.pyplot as plt
np.random.seed(12345)
n = 16
# Create 'x', the vector of measured values.
t = np.linspace(0, 1, n)
x = 0.25*t - 0.2*t**2 + 1.25*np.cos(3*np.pi*t) + 0.8*np.cos(7*np.pi*t)
x[:n//3] += 3.0
x[::4] -= 0.25
x[::3] += 0.2
# Compute the Fourier transform of x.
f = fft(x)
num_samples = 5000000
# Suppose the std. dev. of the 'x' measurements increases linearly
# from 0.01 to 0.5:
sigma = np.linspace(0.01, 0.5, n)
# Generate 'num_samples' arrays of the form 'x + noise', where the standard
# deviation of the noise for each coefficient in 'x' is given by 'sigma'.
xn = x + sigma*np.random.randn(num_samples, n)
fn = fft(xn, axis=-1)
print "Sum of input variances: %8.5f" % (sigma**2).sum()
print "Variances of Fourier coefficients:"
np.set_printoptions(precision=5)
print fn.var(axis=0)
# Plot the Fourier coefficient of the first 800 arrays.
num_plot = min(num_samples, 800)
fnf = fn[:num_plot].ravel()
clr = "#4080FF"
plt.plot(fnf.real, fnf.imag, 'o', color=clr, mec=clr, ms=1, alpha=0.3)
plt.plot(f.real, f.imag, 'kD', ms=4)
plt.grid(True)
plt.axis('equal')
plt.title("Fourier Coefficients")
plt.xlabel("$\Re(X_k)$")
plt.ylabel("$\Im(X_k)$")
plt.show()
打印输出为Sum of input variances: 1.40322
Variances of Fourier coefficients:
[ 1.40357 1.40288 1.40331 1.40206 1.40231 1.40302 1.40282 1.40358
1.40376 1.40358 1.40282 1.40302 1.40231 1.40206 1.40331 1.40288]
如预期,傅里叶系数的样本方差为
所有(大约)与测量方差之和相同。在
这是脚本生成的情节。黑钻石是
单个x向量的傅立叶系数。蓝点是
800个x + noise实现的Fourier系数。你可以看到
每个Fourier系数周围的点云大致是对称的
所有的“尺寸”都一样(当然,除了真正的系数,
在这个图中显示为实际轴上的水平线)。在