python线性输出_1.线性回归实例(python)

该博客通过Python实现线性回归模型,分析海拔与气温的关系。数据表明两者呈线性关系,训练模型得到线性方程Y=-0.0065695X+12.719,并预测8000米海拔的气温约为-39.838℃。
摘要由CSDN通过智能技术生成

例子:气温会随着海拔高的升高而降低, 我们可以通过测量不同海拔高度的气温来预测海拔高度和气温的关系.

我们提供了在9个不同高度测量的气温值, 请你根据今天学习的线性回归方法预测 a 和 b 的值. 根据这个公式, 我们预测一下在8000米的海拔, 气温会是多少?

数据:(表格不知道怎么传,练习数据量也不大,这里直接粘贴上来了)

(1)导入csv格式的数据

# 语言是python3,环境是pycharm

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

#导入训练数据

train=pd.read_csv('D:/Users/Desktop/height.csv')

x=train.iloc[:,:1].values #提取height列

y=train.iloc[:,1].values #提取temperature列

print(train.head()) #取前5条数据

print(train.columns) #取数据每列字段

print(type(y)) #temperature列的数据类型

得到:height temperature

0 0 12.834044

1 500 10.190649

2 1000 5.500229

3 1500 2.854665

4 2000 -0.706488

Index(['height', 'temperature'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值