例子:气温会随着海拔高的升高而降低, 我们可以通过测量不同海拔高度的气温来预测海拔高度和气温的关系.
我们提供了在9个不同高度测量的气温值, 请你根据今天学习的线性回归方法预测 a 和 b 的值. 根据这个公式, 我们预测一下在8000米的海拔, 气温会是多少?
数据:(表格不知道怎么传,练习数据量也不大,这里直接粘贴上来了)
(1)导入csv格式的数据
# 语言是python3,环境是pycharm
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
#导入训练数据
train=pd.read_csv('D:/Users/Desktop/height.csv')
x=train.iloc[:,:1].values #提取height列
y=train.iloc[:,1].values #提取temperature列
print(train.head()) #取前5条数据
print(train.columns) #取数据每列字段
print(type(y)) #temperature列的数据类型
得到:height temperature
0 0 12.834044
1 500 10.190649
2 1000 5.500229
3 1500 2.854665
4 2000 -0.706488
Index(['height', 'temperature'