树是非线性数据结构的一种重要类型,它是由分支关系定义的分层结构
定义:
树(树)是n(n> 0)个节点T的有限集合,其中: 只有一个特定的节点数据结构 二叉树,称为树(根)的根
当n> 1时,其余节点可分为m(m> 0)个不相交的有限集T1,T2,... Tm,其中每个集合本身就是一棵树,称为根'S子树(subtree)
特征: 树中至少有一个节点-根树中的子树是不相交的集合
基本术语
节点(节点)-表示树中的元素,包括数据项和许多指向其子树的分支
节点的度数-节点具有叶的子树的数量-节点的度数为0
child(子)-节点子树的根称为节点的子
父母(父母)-子节点的上层节点称为节点〜
兄弟姐妹-父母相同的孩子
树的度数-树中最大的节点度数
节点的级别-从根节点开始,根是第一级,其子级是第二级...
depth(depth)-树中节点的最大层数
森林-m(m0)棵不相交的树木的集合
二叉树二叉树是一组有限元素. 该集合为空,或具有一个称为根节点(root)的元素和两个不相交的元素数据结构 二叉树,分别称为左和右子树. 二叉树组成.
二叉树的每个节点最多具有两个子树(没有节点的度数大于2),并且二叉树的子树分为左右两半,顺序不能颠倒.
二叉树的i层最多有2个^ {i-1}个节点
深度为k的二叉树最多具有2 ^ k-1个节点;
对于任何二叉树T,如果终端节点的数量为N0,度数为2的节点的数量为N2,则N0 = N2 + 1
遍历二叉树
遍历预购
如果树为空,则返回null操作. 否则,首先访问根节点,然后按照预顺序遍历左侧子树,然后按照预顺序遍历右侧子树. (W)类型(左中右)
中间顺序遍历
如果树为空,则返回null操作. 否则,从根节点开始(请注意,首先不访问根节点),中间顺序遍历根节点的左侧子树,然后访问根节点,最后中间顺序遍历根节点的右侧子树. (M)类型,(左中右)
后续遍历
如果树为空,则返回null操作. 否则,叶子和节点从左到右遍历以访问左右子树,最后到达根节点. (左右中央)逆时针(左右中央)
序列遍历
如果树为空,则返回null操作. 否则,访问将从树的第一层(即根节点)开始,并且从上到下逐层遍历. 在同一层中,从左到右依次访问节点.
交流研究QUN483787113;秘密数字樱桃
本文来自电脑杂谈,转载请注明本文网址:
http://www.pc-fly.com/a/jisuanjixue/article-222720-1.html