树的概念
树(英语:tree)是⼀种抽象数据类型(ADT)或是实作这种抽象数据类型 的数据结构,⽤来模拟具有树状结构性质的数据集合。它是由n(n>=1)个 有限节点组成⼀个具有层次关系的集合。把它叫做“树”是因为它看起来像⼀棵倒挂的树,也就是说它是根朝上,⽽叶朝下的。它具有以下的特点:
⚪ 每个节点有零个或多个⼦节点;
⚪ 没有⽗节点的节点称为根节点;
⚪ 每⼀个⾮根节点有且只有⼀个⽗节点;
⚪ 除了根节点外,每个⼦节点可以分为多个不相交的⼦树;
树的术语
- 节点的度:⼀个节点含有的⼦树的个数称为该节点的度;
- 树的度:⼀棵树中,最⼤的节点的度称为树的度;
- 叶节点或终端节点:度为零的节点;
- ⽗亲节点或⽗节点:若⼀个节点含有⼦节点,则这个节点称为其⼦节点 的⽗节点;
- 孩⼦节点或⼦节点:⼀个节点含有的⼦树的根节点称为该节点的⼦节 点;
- 兄弟节点:具有相同⽗节点的节点互称为兄弟节点;
- 节点的层次:从根开始定义起,根为第1层,根的⼦节点为第2层,以此 类推;
- 树的⾼度或深度:树中节点的最⼤层次;
- 堂兄弟节点:⽗节点在同⼀层的节点互为堂兄弟;
- 节点的祖先:从根到该节点所经分⽀上的所有节点;
- ⼦孙:以某节点为根的⼦树中任⼀节点都称为该节点的⼦孙。
- 森林:由m(m>=0)棵互不相交的树的集合称为森林;
树的种类
- ⽆序树:树中任意节点的⼦节点之间没有顺序关系,这种树称为⽆序 树,也称为⾃由树;
- 有序树:树中任意节点的⼦节点之间有顺序关系,这种树称为有序树;
- ⼆叉树:每个节点最多含有两个⼦树的树称为⼆叉树;
- 完全⼆叉树:对于⼀颗⼆叉树,假设其深度为d(d>1)。除了第d 层外,其它各层的节点数⽬均已达最⼤值,且第d层所有节点从 左向右连续地紧密排列,这样的⼆叉树被称为完全⼆叉树,其 中满⼆叉树的定义是所有叶节点都在最底层的完全⼆叉树;
- 平衡⼆叉树(AVL树):当且仅当任何节点的两棵⼦树的⾼度 差不⼤于1的⼆叉树;
- 排序⼆叉树(⼆叉查找树(英语:Binary Search Tree),也称 ⼆叉搜索树、有序⼆叉树);
- 霍夫曼树(⽤于信息编码):带权路径最短的⼆叉树称为哈夫曼树 或最优⼆叉树;
- B树:⼀种对读写操作进⾏优化的⾃平衡的⼆叉查找树,能够保持数 据有序,拥有多余两个⼦树。
树的存储与表示
顺序存储
将数据结构存储在固定的数组中,然在遍历速度上有⼀定的优 势,但因所占空间⽐较⼤,是⾮主流⼆叉树。⼆叉树通常以链式存储。
链式存储
由于对节点的个数⽆法掌握,常⻅树的存储表示都转换成⼆叉树进⾏处理, ⼦节点个数最多为2
常⻅的⼀些树的应⽤场景
- xml,html等,那么编写这些东⻄的解析器的时候,不可避免⽤到树
- 路由协议就是使⽤了树的算法
- mysql数据库索引
- ⽂件系统的⽬录结构
- 所以很多经典的AI算法其实都是树搜索,此外机器学习中的decision tree也 是树结构
二叉树
⼆叉树的基本概念
⼆叉树是每个节点最多有两个⼦树的树结构。通常⼦树被称作“左⼦树”(left subtree)和“右⼦树”(right subtree)
⼆叉树的性质(特性)
- 在⼆叉树的第i层上⾄多有2^(i-1)个结点(i>0)
- 深度为k的⼆叉树⾄多有2^k - 1个结点(k>0)
- 对于任意⼀棵⼆叉树,如果其叶结点数为N0,⽽度数为2的结点总数 为N2,则N0=N2+1;
- 具有n个结点的完全⼆叉树的深度必为 log2(n+1)
- 对完全⼆叉树,若从上⾄下、从左⾄右编号,则编号为i 的结点,其左 孩⼦编号必为2i,其右孩⼦编号必为2i+1;其双亲的编号必为i/2(i=1 时为 根,除外)
完全⼆叉树——若设⼆叉树的⾼度为h,除第 h 层外,其它各层 (1~ h-1) 的结点数都达到最⼤个数,第h层有叶⼦结点,并且叶⼦结点都是 从左到右依次排布,这就是完全⼆叉树。
)满⼆叉树——除了叶结点外每⼀个结点都有左右⼦叶且叶⼦结点都处在最 底层的⼆叉树。
⼆叉树的节点表示以及树的创建
通过使⽤Node类中定义三个属性,分别为elem本身的值,还有lchild左孩⼦ 和rchild右孩⼦
class Node:
"""节点类"""
def __init__(self, item):
self.item = item
self.lchild = None
self.rchild = None
树的创建,创建⼀个树的类,并给⼀个root根节点,⼀开始为空,随后添加节点
二叉树的遍历
树的遍历是树的⼀种重要的运算。所谓遍历是指对树中所有结点的信息的访 问,即依次对树中每个结点访问⼀次且仅访问⼀次,我们把这种对所有节点 的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍 历和⼴度优先遍历,深度优先⼀般⽤递归,⼴度优先⼀般⽤队列。⼀般情况下 能⽤递归实现的算法⼤部分也能⽤堆栈来实现。
深度优先遍历
对于⼀颗⼆叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树 的节点,尽可能深的搜索树的分⽀。 那么深度遍历有重要的三种⽅法。这三种⽅式常被⽤于访问树的节点,它们 之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历 (preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出 它们的详细定义,然后举例看看它们的应⽤。
- 先序遍历 在先序遍历中,我们先访问根节点,然后递归使⽤先序遍历访 问左⼦树,再递归使⽤先序遍历访问右⼦树 根节点->左⼦树->右⼦树
- 中序遍历 在中序遍历中,我们递归使⽤中序遍历访问左⼦树,然后访问 根节点,最后再递归使⽤中序遍历访问右⼦树 左⼦树->根节点->右⼦树
- 后序遍历 在后序遍历中,我们先递归使⽤后序遍历访问左⼦树和右⼦ 树,最后访问根节点 左⼦树->右⼦树->根节点
⼴度优先遍历(层次遍历)
从树的root开始,从上到下从从左到右遍历整个树的节点
代码实现
class Node:
"""节点类"""
def __init__(self, item):
self.item = item
self.lchild = None
self.rchild = None
class BinaryTree:
"""二叉树"""
def __init__(self, node=None):
self.root = node
def add(self, item):
"""广度优先遍历方式添加节点"""
if self.root is None:
self.root = Node(item)
else:
queue = list()
queue.append(self.root)
while len(queue) > 0:
node = queue.pop(0)
if not node.lchild:
node.lchild = Node(item)
return
else:
queue.append(node.lchild)
if not node.rchild:
node.rchild = Node(item)
return
else:
queue.append(node.rchild)
def breadh_travel(self):
"""广度优先遍历"""
if self.root is None:
return
queue = list()
queue.append(self.root)
while len(queue) > 0:
node = queue.pop(0)
print(node.item, end=" ")
if node.lchild:
queue.append(node.lchild)
if node.rchild:
queue.append(node.rchild)
def preorder_travel(self, root):
"""先序 根 左 右"""
if root:
print(root.item, end=" ")
self.preorder_travel(root.lchild)
self.preorder_travel(root.rchild)
def inorder_travel(self, root):
"""中序 左 根 右"""
if root:
self.inorder_travel(root.lchild)
print(root.item, end=" ")
self.inorder_travel(root.rchild)
def postorder_travel(self, root):
"""后序 左 右 根"""
if root:
self.postorder_travel(root.lchild)
self.postorder_travel(root.rchild)
print(root.item, end=" ")
if __name__ == '__main__':
tree = BinaryTree()
tree.add(0)
tree.add(1)
tree.add(2)
tree.add(3)
tree.add(4)
tree.add(5)
tree.add(6)
tree.add(7)
tree.add(8)
tree.add(9)
tree.breadh_travel()
print("")
tree.preorder_travel(tree.root)
print("")
tree.inorder_travel(tree.root)
print("")
tree.postorder_travel(tree.root)
print("")
exit(?)