平面向量内积坐标公式推导_向量的数量积的坐标运算公式是如何推导出的 两个向量的向量积公式是怎...

a·b=|a|·|b|·cos〈a,b〉是定义,推出交换律,分配率,与数的乘法的结合

律,以及垂直时为零。

∴(x1,y1)·(x2,y2)=[x1i+y1j]·[x2i+y2j]

=x1x2(i·i)+y1y2(j·j)+[x1y2+x2y1](i·j)=x1x2+y1y2.

[ i,j是x轴。y轴上的单位向量。i²=1, j²=1, i·j=0 ]

看你是要高中证明还是大学证明还是更严密的证明。

向量有点量积、矢量积、旋量积之分。大多高中只接触个点积而已

三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

下面把向量外积定义为:

a

×

b

=

|a|·|b|·Sin

b>.

分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。我们假定已经知道了:

1)外积的反对称性:

a

×

b

=

-

b

×

a.

这由外积的定义是显然的。

2)内积(即数积、点积)的分配律:

a·(b

+

c)

=

a·b

+

a·c,

(a

+

b)·c

=

a·c

+

b·c.

这由内积的定义a·b

=

|a|·|b|·Cos

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

weixin_39937312

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值