自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 资源 (1)
  • 收藏
  • 关注

转载 特征工程--特征选择wrapper(递归特征消除)

递归特征消除 (Recursive Feature Elimination)递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,移除若干权值系数的特征,再基于新的特征集进行下一轮训练。sklearn官方解释:对特征含有权重的预测模型(例如,线性模型对应参数coefficients),RFE通过递归减少考察的特征集规模来选择特征。首先,预测模型在原始特征上训练,每个特征指定一个权重。之后,那...

2018-10-22 10:36:42 15020

转载 文本分类之有多少个不同的单词

P(Y∣X)=P(X∣Y)P(X)P(Y|X)=\frac{P(X|Y)}{P(X)}P(Y∣X)=P(X)P(X∣Y)​#!/usr/bin/python-- coding: utf-8 --#cangye@hotmail.com“”"文本向量化方法1统计词频“”"print(doc)#feature_extraction 文本向量化import sklearn.fea...

2018-10-21 15:57:37 184

转载 数据归一化 特征处理

import numpy as npX = np.zeros([1000,2])x1=np.random.normal(0.0,3,[1000])x2=np.random.normal(1.0,0.1,[1000])#减去均值x1 = x1-np.mean(x1)x2 = x2 - np.mean(x2)x1 = x1/(np.std(x1)+1e-6)x2 = x2/(np.st...

2018-10-21 14:29:20 280

转载 KNN算法

#!/usr/bin/python#-- coding: utf-8 --#cangye@hotmail.com“”"KNNKNN方法中没有训练过程,其分类方式就是寻找训练集附近的点。所以带来的一个缺陷就是计算代价非常高但是其思想实际上却是机器学习中普适的“”"print(doc)from sklearn.neighbors import KNeighborsClassifie...

2018-10-21 14:13:43 230

原创 过拟合欠拟合问题

过拟合欠拟合问题过拟合模型复杂度高,数据量过少,容易引起过拟合如何判断过拟合欠拟合:通过loss函数训练集loss测试集loss结论小小模型适中大大模型欠拟合小大模型过拟合大小无此场景...

2018-10-21 11:23:24 711

原创 gini函数和entropy 函数 数据分类效果对比

gini函数和entropy 函数 数据分类效果对比from sklearn.datasets import load_irisfrom sklearn import treeimport osimport pydotprint(os.getcwd())#clf = tree.DecisionTreeClassifier(criterion = “entropy”) #entropy...

2018-10-20 11:28:23 4601

转载 特征选择之方差选择法VarianceThreshold

VarianceThreshold#方差选择法#使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。使用feature_selection库的VarianceThreshold类来选择特征的代码如下:from sklearn.feature_selection import VarianceThreshold#方差选择法,返回值为特征选择后的数据 #参数thres...

2018-10-13 17:40:22 24835 3

原创 特征工程思维导图

2018-10-13 17:11:32 431

jmeter-plugins-dubbo-1.3.6

jmeter调用dubbo接口插件:jmeter-plugins-dubbo-1.3.6

2023-03-15

jmeter-dubbo

jmeter 调用dubbo接口插件: jmeter-plugins-dubbo-2.7.8

2023-03-15

PCA最大可重构性

PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。

2018-10-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除