常用的距离度量准则
1。欧式距离(Euclidean Distance)
欧式距离又称欧几里得度量,较早的文献称之为毕达哥拉斯度量。
二维平面上两个点(x1, y1),(x2, y2)间的欧式距离:
三维空间两个点(x1, y1, z1),(x2,y2,z2)间的欧式距离:
n维空间两个点(x11,x12,x13,……),(x21,x22,x23,……)间(两个n维向量)的欧式距离:
欧式距离的缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。(每个坐标对欧氏距离的贡献是同等的。当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。没有考虑到总体变异对距离远近的影响。