python计算坐标点欧式距离_常用的距离度量准则

本文介绍了Python中用于计算坐标点距离的几种常见度量准则,包括欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧式距离和马氏距离。详细阐述了各自的定义、计算公式及适用场景,并指出了不同距离度量的优缺点。
摘要由CSDN通过智能技术生成

15350254e5608f2da6dc356586102273.png

常用的距离度量准则

1。欧式距离(Euclidean Distance)

欧式距离又称欧几里得度量,较早的文献称之为毕达哥拉斯度量。
二维平面上两个点(x1, y1),(x2, y2)间的欧式距离:

5731b1f5cb02c0870c776018ac9e7040.png

三维空间两个点(x1, y1, z1),(x2,y2,z2)间的欧式距离:

552c16476dc425fe5c702579527b72bf.png

n维空间两个点(x11,x12,x13,……),(x21,x22,x23,……)间(两个n维向量)的欧式距离:

fda147614bdf71e738a6d08de9d5a0a3.png

欧式距离的缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。(每个坐标对欧氏距离的贡献是同等的。当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。没有考虑到总体变异对距离远近的影响。

2。曼哈顿距离(Manhatta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值