1 Hadoop 系统架构
1.1 Hadoop1.x和Hadoop2.x 架构
在介绍HA之前,我们先来看下Hadoop的系统架构,这对于理解HA是至关重要的,Hadoop
1.x之前,其官方架构如图1所示:
[ 图1.Hadoop 1.x架构图 ]
从图中可看出,1.x版本之前只有一个Namenode,所有元数据由惟一的Namenode负责管理,可想而之当这个NameNode挂掉时整个集群基本也就不可用。
Hadoop 2.x的架构与1.x有什么区别呢。我们来看下2.x的架构:
[ 图2.Hadoop 2.x架构图 ]
2.x版本中,HDFS架构解决了单点故障问题,即引入双NameNode架构,同时借助共享存储系统来进行元数据的同步,共享存储系统类型一般有几类,如:Shared
NAS+NFS、BookKeeper、BackupNode 和 Quorum Journal
Manager(QJM),上图中用的是QJM作为共享存储组件,通过搭建奇数结点的JournalNode实现主备NameNode元数据操作信息同步。
Hadoop的元数据包括哪些信息呢,下面介绍下关于元数据方面的知识。
1.2 Hadoop 2.x元数据
Hadoop的元数据主要作用是维护HDFS文件系统中文件和目录相关信息
元数据的存储形式主要有3类:内存镜像、磁盘镜像(FSImage)、日志(EditLog)。
在Namenode启动时,会加载磁盘镜像到内存中以进行元数据的管理,存储在NameNode内存;
磁盘镜像是某一时刻HDFS的元数据信息的快照,包含所有相关Datanode节点文件块映射关系和命名空间(Namespace)信息,存储在NameNode本地文件系统;
日志文件记录client发起的每一次操作信息,即保存所有对文件系统的修改操作,用于定期和磁盘镜像合并成最新镜像,保证NameNode元数据信息的完整,存储在NameNode本地和共享存储系统(QJM)中。
如下所示为NameNode本地的EditLog和FSImage文件格式,EditLog文件有两种状态:
inprocess和finalized,
inprocess表示正在写的日志文件,文件名形式:editsinprocess[start-txid]
finalized表示已经写完的日志文件,文件名形式:edits*[start-txid]*[end-txid];
FSImage文件也有两种状态, finalized和checkpoint,
finalized表示已经持久化磁盘的文件,文件名形式: fsimage_[end-txid],
checkpoint表示合并中的fsimage
2.x版本checkpoint过程在Standby
Namenode(SNN)上进行,SNN会定期将本地FSImage和从QJM上拉回的ANN的EditLog进行合并,合并完后再通过RPC传回ANN。
data/hbase/runtime/namespace
├── current
│ ├── VERSION
│ ├── edits_0000000003619794209-0000000003619813881
│ ├── edits_0000000003619813882-0000000003619831665
│ ├── edits_0000000003619831666-0000000003619852153
│ ├── edits_0000000003619852154-0000000003619871027
│ ├── edits_0000000003619871028-0000000003619880765
│ ├── edits_0000000003619880766-0000000003620060869
│ ├── edits_inprogress_0000000003620060870
│ ├── fsimage_0000000003618370058
│ ├── fsimage_0000000003618370058.md5
│ ├── fsimage_0000000003620060869
│ ├── fsimage_0000000003620060869.md5
│ └── seen_txid
└── in_use.lock
上面所示的还有一个很重要的文件就是seen_txid,保存的是一个事务ID,这个事务ID是EditLog最新的一个结束事务id,当NameNode重启时,会顺序遍历从edits_0000000000000000001到seen_txid所记录的txid所在的日志文件,进行元数据恢复,如果该文件丢失或记录的事务ID有问题,会造成数据块信息的丢失。
HA其本质上就是要保证主备NN元数据是保持一致的,即保证fsimage和editlog在备NN上也是完整的。元数据的同步很大程度取决于EditLog的同步,而这步骤的关键就是共享文件系统,下面开始介绍一下关于QJM共享存储机制。
2 Hadoop的HA机制
前言:正式引入HA机制是从hadoop2.0开始,之前的版本中没有HA机制
1.1 HA的运作机制
(1)hadoop-HA集群运作机制介绍
所谓HA,即高可用(7*24小时不中断服务),实现高可用最关键的是消除单点故障
hadoop-ha严格来说应该分成各个组件的HA机制——HDFS的HA、YARN的HA
(2)HDFS的HA机制详解
通过双namenode消除单点故障,双namenode协调工作的要点:
A、元数据管理方式需要改变:
(1)内存中各自保存一份元数据
(2)Edits日志只能有一份,只有Active状态的namenode节点可以做写操作
(3)两个namenode都可以读取edits
(4)共享的edits放在一个共享存储中管理(qjournal和NFS两个主流实现)
B、需要一个状态管理功能模块
(1)实现了一个zkfailover,常驻在每一个namenode所在的节点
(2)每一个zkfailover负责监控自己所在namenode节点,利用zk进行状态标识
(3)当需要进行状态切换时,由zkfailover来负责切换
(4)切换时需要防止brain split现象的发生
1.2 HDFS-HA图解: