


人教版五年级下册资源包 | |
课题 | 第四单元:《公倍数和最小公倍数》 (教材P68、69、71内容) |
课程设计者 | 柳州市小数指导中心成员 柳州市柳北区长塘中心校 覃柳媛 柳州市第四十六中学教育集团(附小) 罗怡 |
目标导学 | ![]() 学习目标 1.理解公倍数和最小公倍数的意义。 2.掌握求两个数的公倍数和最小公倍数的方法,能根据实际情况选择较简便的方法。 ![]() 学具准备 课本、练习本、笔。 ![]() 预学任务 旧知回顾:什么叫倍数?怎样求一个数的倍数? 1.阅读课本P68例1、P69页例2和“你知道吗?”,尝试在预学本上完成两个例题。思考以下问题: (1)什么叫两个数的公倍数和最小公倍数?有没有最大的公倍数? (2)怎样求两个数的公倍数和最小公倍数?它们之间有什么关系? (3)两个数的公因数与最大公因数、公倍数与最小公倍数有什么区别? 2. 根据预学,尝试完成P68、P69“做一做”。 3. 观看推送的微课,可适时暂停视频思考和做笔记。预学后即时订正错误。 点击边框调出视频工具条——本微课引自:徐长青工作室 4. 记录下学习过程中的1-2个问题。 【呈现形式】把例1、例2的思考题写在预学本上,P68和P69的“做一做”写在练习本上,拍照上传到小程序。 |
精讲点拨 质疑问难 | 一 认识公倍数和最小公倍数 1.根据预学,用集合圈说一说:4和6公有的倍数是哪几个?公有的最小倍数是多少?(展示学生作业,指名交流) 2. 用自己的话说一说:什么叫两个数的公倍数和最小公倍数?有没有最大的公倍数?(指名说一说) 两个数公有的倍数叫做它们的公倍数,其中最小的公倍数是最小公倍数,没有最大公倍数。 ![]() ![]() ![]() ![]() 二 探究求公倍数和 最小公倍数的方法 1.探究方法,构建联系 反馈与讲评 反馈预学,讲评P68“做一做” (展示学生作业) 全班交流答案,即时订错。 (1) ![]() 有哪些方法可以求3和6的公倍数和最小公倍数?你喜欢哪种方法?为什么? 方法预设1 列举法,分别列举3和6的倍数,找到它们的相同倍数即公倍数,再找出最小公倍数。 方法预设2 筛选法,从6的倍数中圈出3的倍数,即它们的公倍数,再找出最小公倍数。 方法预设3 分解质因数的方法: 3=1×3 6=2×3 3和6的最小公倍数:1×2×3=6 方法预设4 短除法(是分解质因数法的简便写法) ![]() 3和6的最小公倍数:3×1×2=6(把公有的质因数和最后的两个商一起相乘) 指导建议 学生若有其它合理的方法,教师应予以肯定评价。 找最小公倍数的方法有列举法、筛选法、分解质因数(短除法),可根据实际情况选择较简便的方法。 ![]() (2) ![]() 怎样在集合圈里表示3和6的公倍数和最小公倍数?(指名交流) 预 设 在集合圈相交重合部分填入3和6的公倍数6,12,18,…,其余部分填写它们各自的倍数,因为倍数个数无限,可以用省略号“…”表示,然后从公倍数中圈出最小公倍数6。 (3)构建联系:两个数的公倍数和最小公倍数之间有什么关系?举例说明。 ![]() 例如3和6的公倍数有6,12,18,…,6是最小公倍数,12÷6==2,18÷6=3…通过观察,我们发现两个数的公倍数是最小公倍数的倍数。 指导建议 引导学生举例说明、拓展验证,教师予以肯定评价。 ![]() ![]() ![]() 2.探究特殊情况,积累经验。 (1)反馈检验预学,讲评P68“做一做” (展示学生作业) 全班交流,即时订错。 (2)观察思考:观察每组数的最小公倍数,你发现了什么?(小组讨论,指名回答) 预 设1 当两数成倍数关系时,较大数是它们的最小公倍数。 预 设2 当两数只有公因数1时(互质),两个数的积是它们的最小公倍数。 ![]() 在求两个数的最小公倍数时,如果是以下两种特殊关系,可以运用规律直接写出它们的最小公倍数;如果不是,可以用学过的方法找出它们的最小公倍数。 ![]() ![]() ![]() ![]() 3.对比概念,辨析理解。 ![]() 两个数的公因数和最大公因数、公倍数和最小公倍数有什么区别?(分组讨论,代表汇报,交流补充。) 两个数的公因数的个数是有限的,最小的公因数都是1,有最大公因数;两个数的公倍数的个数是无限的,只有最小公倍数,没有最大公倍数。 ![]() 指导建议 学生若有其它合理的发现,教师应予以肯定评价。 ![]() 今天的内容你都学会了吗?可以和大家分享一下你的收获,如果还有什么不理解的地方请大胆的提出来。 谁来当小老师帮忙解答同学们提出的疑问?(师生共同答疑解惑) ![]() |
达标检测 | ![]() 完成以下作业 1.课本第71页第1题。 2.课本第71页第2题。 |
反馈矫正 | ![]() 评价要点 【第1题评价要点】通过依次列举100以内6和10的倍数,感知两个数各自的倍数、公倍数和最小公倍数之间的关系,促进概念的理解。 【第2题评价要点】求两个数的最小公倍数,其中8和10、1和7存在倍数关系,可直接选较大的数是最小公倍数;4和15、1和7是互质关系,可利用两数的乘积得到最小公倍数;其它的几组数字均可用列举法、筛选法和短除法求最小公倍数,但短除法是最简便的。培养学生学会根据实际情况选择较简便的方法解决问题。 |
结 构化 板书设计 | ![]() |
接下面第2课时
人教版五年级下册资源包 | |
课题 | 第四单元:《最小公倍数例3》 (教材P70) |
课程设计者 | 柳州市小数指导中心成员 柳州市柳太路小学 肖瑾瑜 柳州市柳北区长塘中心校 覃柳媛 |
目标导学 | ![]() 学习目标 1.会用求两个数的公倍数和最小公倍数的方法解决实际问题。 2.通过把实际问题转化为数学问题,提高分析问题、解决问题的能力。 ![]() 学具准备 正方形方格纸,长3cm、宽2cm的长方形纸片若干,草稿本和笔。 ![]() 预学任务 1.阅读与理解。 阅读课本P70例3,说一说已知信息和问题表示的意思。 2.分析与解答。 (1)在正方形方格纸上,用学具长方形纸片摆一摆或画一画。思考:用了( )块长方形,铺成的正方形边长可以是( )分米,最小是( )分米。 (2)还能用学过的什么知识来解决问题?试着写一写。 (3)解决这个问题的关键是什么? 3.回顾与反思。 怎样验证答案是正确的?画一画或写一写。 4.观看推送的微课,适时暂停,及时纠正。 点击边框调出视频工具条——本微课引自:徐长青工作室 5.记录下预学中的1-2个疑难问题与同学们交流。 【呈现形式】先写在预学本上,再拍照上传到小程序。 |
精讲点拨 质疑问难 | 一 阅读与理解 ![]() “用的墙砖必须是整块” 、“可以是多少分米?”和“最小是多少分米?”表示什么意思?(指名交流) 预 设: “用的墙砖必须是整块”表示砖必须是整块,不能切割成半块或其他;“可以是多少分米?”表示能铺的正方形可能有很多种,答案不唯一;“最小是多少分米?”表示能铺的边长最小的正方形。 ![]() ![]() ![]() 二 分析与解答 1.(展示学生预学作业) 说一说:我用了( )块长方形,铺成的正方形边长可以是( )分米,最小是( )分米。 ![]() ![]() ![]() ![]() 2.观察思考:铺成的正方形墙面边长和长方形墙砖的长与宽之间有什么关系?(小组讨论,代表汇报) 预 设: 正方形的边长既是2的倍数,又是3的倍数,也就是2和3的公倍数:6,12,18,…其中最小公倍数是6,所以铺的正方形边长可以是6dm,12dm,18dm…,最小是6dm。 ![]() ![]() ![]() 3. 获取方法:解决这个问题的关键是什么? ![]() 关键是把铺砖问题转化成求公倍数和最小公倍数的问题。 三 回顾与反思 1. 怎样验证答案是正确的? (展示学生作业,指名交流) 预 设: 可以在边长6dm,12dm,18cm,…的正方形上画一画,看找得对不对。 指导建议 可以利用画图验证的策略来检验,学生有其他验证方法合理即可,教师应给予肯定评价。 2. 解决此类问题的关键是什么? ![]() 解决此类问题时,就是要把实际问题转化成数学问题。生活中,如果问题要求的是两个量共有(公有或相同)部分时,可以把问题转化成求公倍数的问题;一般求共有(公有或相同)部分中的“最少”、“最小”、“至少”等问题就是求最小公倍数。 今天的内容你还能想到用什么方法解决?还有什么疑问可以提出。(师生交流释疑) ![]() 预设:短除法求两个数的最小公倍数。 |
达标检测 | ![]() 完成以下作业 课堂练习:完成课本P72第 10、11题。 |
反馈矫正 | ![]() 评价要点 【第10题评价要点】教师关注学生是否能够根据问题判断是求最小公倍数的实际应用问题,即求6和8的最小公倍数,就是24。 【第11题评价要点】教师关注学生是否能够根据问题判断是求最小公倍数的实际应用问题。第(1)题,即求3和4的最小公倍数,至少12分钟后两人在起点再次相遇。第(2)题,教师关注学生是否会发现问题、提出问题和解决问题。举例:妈妈和小红(或爸爸和小红,或3人)同时起跑,至少多少分钟后两人在起点再次相遇?此时他们分别跑了多少圈? |
结构化 板书设计 | ![]() |
接下面第3课时
人教版五年级下册资源包 | |
课题 | 第四单元:《通分》 (教材P73,74的例4,例5内容) |
课程设计者 | 柳州市小数指导中心成员 公园路小学教育集团 马晓明 |
目标导学 | ![]() 学习目标 1.掌握比较同分母分数和同分子分数大小的方法。 2.理解通分的意义,掌握通分的方法;会利用通分,比较异分母异分子分数的大小。 3.能用不同方法比较分数的大小。 ![]() 学具准备 课本、预学本。 ![]() 预学任务 提示:三年级上册第八单元《分数的初步认识》,我们已经学过了如何比较同分母分数的大小。 1. 独立阅读课本P73例4。 ![]() 思考:课本上是如何用推理的方法,比较出 2.请用画图的方法,比较出 3.你能用刚才推理或画图的方法,比较 4.试着完成课本P73以下课本内容及“做一做”并回答题目中的问题,写在课本上。 ![]() 5. 阅读课本P74例5,划出重点内容。 6. 观看微课,回答以下问题,写在预学本。 点击边框调出视频工具条——本微课引自:徐长青工作室 (1)通分的目的是什么? (2)通分时,用什么来做两个分数的公分母? (3)如何利用分数的性质,进行通分? (4)通分要注意什么? 7. 尝试完成课本P74做一做,写在课本上。 【呈现形式】先把上面第1、2、3、4、7的步骤写在预学本上。 |
精讲点拨 质疑问难 | ![]() 1.同分母分数比大小。 (选学生画图比较素材展示) 评价重点:第一,两幅图是否单位“1”相同;第二,是否都是平均分成若干份。 结论:同分母分数比大小,分子大的分数大。 ![]() ![]() ![]() ![]() 2.同分子分数比大小。 (选学生画图比较素材展示) 评价重点:第一,两幅图是否单位“1”相同;第二,是否都是平均分成若干份。 ![]() 结合画图推理: 把两个大小相同的圆,平均分的份数越多,每份就越小;都取2份,所以 ![]() 谁能总结一下,如何比较同分子分数的大小?(请3个学生回答) 结论:同分子分数比大小,分母越大,分数反而越小。 ![]() ![]() ![]() ![]() 3. 探究通分方法。 我们一起来解决预学时的问题。(组内交流,代表汇报。) ![]() (1)通分的目的是什么? 预设:把异分母分数变成同分母分数。 (2)通分时,用什么来做两个分数的公分母? 预设:用两个数的最小公倍数做公分母,这样相对简单。 (3)如何利用分数的基本性质,进行通分? ![]() 先求出原来分母的最小公倍数作公分母,再依据分数的基本性质,原来的分母要乘几变成公分母,分子也要乘相同的数。 (4)通分要注意什么? 通分时,选择最小公倍数做公分母比较简单。通分前后,分数的大小不变。 ![]() ![]() ![]() ![]() ![]() 4.通分书写格式。 比较 要求:模仿课本,写出比较过程。(学生独立尝试完成) 格式统一: ![]() 如果题目要求是通分,就只需写前两个步骤。 ![]() |
达标检测 | ![]() 完成以下作业 1. 完成课本P74做一做,第1题,后面两题;第2题。 2. 课本P75,第1题,写在课本。 3. 完成课本P75,第2题(按格式要求,写出过程,写在本子上) |
反馈矫正 | ![]() 评价要点 【课本P74第1题、P75第1题评价要点】以上达标检测,均是让学生熟悉通分过程,教师关注学生公分母是否找得准确,是否为最小公倍数。为后面分数加减法打下基础。 【课本P75第2题评价要点】教师关注学生是否可以使用分子和分母交叉相乘的方法,快速判断出两个分数的大小。(相对于写通分过程,比较的过程更简化,快速。) |
结构化 板书设计 | ![]() |


扫码关注我们
策划:陈 进
文稿:覃柳媛 罗怡
马晓明 肖瑾瑜
审核:覃柳媛
编辑:蒙俊敏
