Python基础、导入数据、Jupyter Notebook、Numpy基础、Matplotlib绘图、Pandas基础和进阶、Scikit-Learn、Keras
当我们学一些具体操作的知识后,经常很容易忘记。学编程语言也是一样,总是会有很多函数学的很快,遗忘的也很快。但通常这些函数,并不需要很深刻的理解,你知道它需要什么参数,怎么调用就可以了。
这份速查表,就可以帮你解决以上的问题。当你记不清的时候,可以迅速地找到对应的函数,查看使用说明。
按照先后顺序,
大致可以分为三个阶段:
001.
python基础、数据的导入
002.
数据科学计算的“三件套”
numpy、matplotlib、pandas
Numpy是Python数据科学计算的核心库,提供了高性能的多维数组对象及处理数组的工具。
Matplotlib是Python的二维绘图库,用于生成符合出版质量或
跨平台交互环境的各类图形。
Pandas是基于Numpy创建的Python库,提供
了易于使用的数据结构和数据分析工具。
003.
机器学习和深度学习模块
Scikit-learn通过统一的界面实现
机器学习、预处理、交叉验证及可视化算法。
Keras是强大、易用的深度学习库,基于Theano和TensorFlow提供
了高阶神经网络API,用于开发和评估深度学习模型。
英文原版作者DataCamp的速查表,
项目地址如下:
https://www.datacamp.com/community/data-science-cheatsheets
中文版由“呆鸟的Python数据分析”翻译,
中文项目地址:
https://github.com/jaystone776/python-data-science-cheatsheet
转自:
GitPython 微信公众号;







END
声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。
商务合作:qq:1137312033
数据挖掘与大数据分析(ID : datasudi )关注大数据,数据挖掘,机器学习,深度学习等人工智能领域,以传播大数据、解读行业趋势、数据化运营为核心的新媒体平台。